Implementing IIOT: The Time Is Now

  • Wednesday, 03 May 2017 00:00

Applying the Industrial Internet of Things (IIoT) to factories confers a host of operational benefits. By Advantech

Machinery and production automation systems need to be advanced enough to deliver high performance, and integrated enough to provide economical operation, yet must be based on mature products and methodologies offering sufficient reliability.

So why push for tightly integrated operational information and other advanced functionalities if individual pieces of machinery are running “good enough”?

The main reason is because harvesting, processing and analysing the correct data helps operational personnel make the best informed choices at their facilities, and enables management to optimise strategic plans throughout multiple locations. Simply put, advanced data analytics improves efficiency, reduces maintenance, and creates a safer work environment.

Convergent Evolution

Fortunately in recent years, a number of device, communication, and software capabilities have developed in an interrelated manner—making it easier to extract and analyse manufacturing data.

When combined effectively, they can elevate “business as usual” manufacturing to “smart” manufacturing. In fact, in many ways automated manufacturing is already smarter than one might expect.

Machinery and process plants commonly employ control systems with many types of sensors. While the highly-touted Internet of Things (IoT) concept promises that one day all devices will become networked information providers, it turns out that the Industrial IoT (IIoT) already has countless sensors and other devices reporting data to higher level automation systems. Where the IoT is directed toward consumer convenience, the IIoT takes a laser focus on efficiency and safety.

Manufacturers such as Advantech offer a spectrum of hardware and software to facilitate gathering information from the lowest level sensor, or any machine, and routing it over a network to higher level automation, visualisation, and information systems. Automation controllers pre-process and package the raw information from sensors and other field devices. These devices are the “things” in the IIoT.

Industrial wired and wireless networks, working in conjunction with the Internet and cloud services, are the superhighway for moving information. This information moves from field controllers to human machine interfaces (HMIs) located on the plant floor and in control rooms, and from the HMIs to front office PCs and out into the mobile world of smartphones and tablets.

Smart manufacturing is a powerful trend, building on readily available hardware and software to take production operations to the next level of performance.

The Time To Implement The IIoT Is Now

Manufacturing businesses worldwide want to implement the IIoT to gather more data and improve operations. While these objectives have been present for many decades, it’s now much more feasible to implement the IIoT because of the technology advancements as expounded upon below.

Why Implement The IIoT Now?

  • Most new devices offer smart connectivity
  • Methods exist to enable traditional devices to become smart
  • Controllers are proficient at handling smart data
  • Standardised wired and wireless Ethernet networks are economical, powerful, and pervasive
  • Specific industrial networking formats are common
  • Open interfaces and numerous drivers are available to facilitate economic integration
  • Communication methods are suitable for private and public clouds
  • Mobile visualisation offers new ways to bring data to users
  • Big data harvested from the IIoT can be more easily analysed
  • Smart manufacturing adoption can occur in steps, with benefits realised along the way

More often than not, connectivity is the “killer app”. Consumer devices such as phones, watches, appliances, and even sneakers are commonly able to connect and interact with each other.

Similarly, industrial devices have moved from awkward and proprietary communication interfaces to standardised networks and protocols, often Ethernet-based. In today’s market, industrial manufacturing demands connectivity from most devices purchased. Even if the functionality is not immediately needed, it helps to future-proof investments.

For legacy devices using basic analogue and digital signals, or maybe simple serial communications, there are modules that can boost this equipment up on to contemporary networks and protocols. In this way, end users can choose an upgrade path that preserves their existing system, yet provides value by making their “dumb” devices smart, leading to intelligent machinery.

Connecting Islands To The Mainland

Many production plants consist of “islands of automation”. Often, there are many automated skids or systems with minimal interaction among them, even though taken as a whole they form a production line. Sometimes these systems have been assembled and grown over a long period of time.

What they have in common, though, is that each island is operated by one or more controllers. Industrial controllers have more than enough power to perform some data processing, but may not share common communication protocols.

Fortunately, there are many flavours of “gateways” or “bridges” available. These can take the form of dedicated configurable devices, or PCs running various drivers and communication software. These gateways can translate pertinent information from existing systems into a suitable format for higher level integration.

When disparate controllers and the systems they control are capable of being connected, some huge informational advances can be achieved. Such systems can be interconnected to supervisory alarming and historian systems, consolidating key information from a whole production line into a few effective displays or reports.

For many operations, when subsystems are integrated in this way, it is possible to achieve a transfer of upstream and downstream information and improve the production flow. Or, when production goes down it is possible to use the integrated information to identify and eliminate the root cause, promoting overall equipment effectiveness (OEE) tracking.

These are just a few of the benefits of a connected factory. As Jamie Carter puts it, “In the wider economy, the IIoT is critical in reducing unplanned downtime of production facilities and plants.”

Moving Information To The Next Level

Assuming that technical and cost barriers are overcome for gathering information in a smart factory, what are the next steps? The first is typically to make the information visible to operators and managers so that they can make informed decisions.

This used to mean tabular lists or printouts of numbers, but information presented in this manner is difficult for people to process. That is why so many variants of graphical display software and HMI packages have been developed.

Earlier generation HMIs used to just reside locally to their associated factory processes. Today’s HMIs use networking, the Internet, and public or private cloud services to extend their reach to wherever users are. Instead of just a single machine, production line, or factory being coordinated—it is now possible to manage multiple factories across the world in a more organised manner.

The Internet and cloud services are ideal for publishing smart manufacturing information to laptops, tablets, and smartphones, putting the information directly in user’s hands. Many visualisation software packages have features specifically adapted to mobile device operation. It has become especially prevalent and useful for mobile devices to present a streamlined “dashboard” view which shows only the most important information in an easy-to-read format.

End user expectations from HMI packages have soared, due to consumer familiarity with high performance home computers, phones, and tablets. The graphics must be informative and must also look good and easy to use. HMIs that take advantage of multi-touch swipe and zoom gestures position themselves that much close to the everyday user.

Browser-based products like Advantech’s WebAccess are available that offer a familiar user experience, are easily extendable to all types of devices, and are able to publish the information conveniently over the Internet.

Harvesting Big Data

But the smart factory is about much more than just dishing out pretty graphics. At the factory level, the proper flow of status and command information is crucial for manufacturing execution systems (MES) that strive to track and record the production of finished goods. At an even higher level, data is required for enterprise resource planning (ERP) and business logistics systems to be effective.

A real opportunity exists when all of the big data can be harvested from many IIoT sources, and then effectively analysed to reveal inefficiencies that can be overcome or trends that can be intelligently re-vectored.

Gathering enough of the right information can enable users to make discoveries that would be otherwise impossible. Besides just improved throughput, benefits can be found in material costs, energy efficiencies, labour costs, maintenance costs, and the cost of adverse quality.

Keep in mind that implementing smart manufacturing is not an all-or-nothing proposition. If fact, adopting smart technologies and methods can (and often should be) carried out in steps. This reduces the initial cost, and allows an organisation to determine which pieces of the smart factory yield the most benefit for their situation.

The time to implement the IIoT is now, and here are the specific components which make up a typical IIoT implementation in a manufacturing plant.

IIoT Building Blocks

Data flowing through the smart factory can be imagined as a pyramid structure as shown graphically in Figure 1, and as detailed in Figure 2.

Another good reference is ISA-95, which defines industrial automation interface concepts from the lowest (Level 0) to the highest (Level 4) level in terms of both functionality and immediacy. If “Level 0” is considered to be the actual physical process, then the smart manufacturing foundation begins at “Level 1” and consists of the sensors and field devices.

Examples of IIoT building blocks:

  • Smart sensors
  • Network-capable I/O
  • Controllers–PLCs, PACs, DDCs, Proprietary
  • Network switches, media converters, routers, security
  • Visualisation, fixed location
  • Visualisation, mobile
  • Business strategy systems

Traditional sensors were historically hardwired and offered only a single basic process signal, but today’s smart sensors are networked and provide additional process signals and device diagnostics. They can maintain on-board calibration data, and technicians can interact with these sensors remotely. Think of a flow transmitter that also provides temperature and pressure information, and can alarm when the data readings are suspect.

More advanced analysers can simultaneously provide multiple-sensed variables for complex parameters. Barcode readers and RFID tags are key ways to establish material tracking. Many other types of smart sensors and field devices are available, all capable of providing data to higher level systems.

The Highest Levels Of Smart Manufacturing

HMIs are “Level 2” systems that facilitate detailed plant operations. They can be PC-based running software, or a more dedicated hardware type. Plant networks supply HMIs with the information they need, either directly from field devices, or more commonly through I/O and controllers.

These HMIs can be flexibly located in main control rooms, on machines, in maintenance and management locations, or elsewhere. More recently, it has become common to configure consumer-grade or industrial-grade tablets as HMIs and troubleshooting stations that can be carried around the factory.

One of the real game changers in HMI space over the past decade is the emergence of browser-based products. No longer are users tied to specialised hardware, or difficult software installations. Just as PCs and Ethernet successfully leveraged commercial technology into the industrial arena, browser-based products prospered by offering much of the same end user experience as traditional software, but at a lower price point and requiring near-zero configuration on the end user’s device.

These products are capable of providing an HMI interface anywhere within a facility, on all types of mobile devices, and throughout the world via the Internet. Not only that, but they can offer advanced features such as integration with Excel, Google Maps, and video streams.

Comprehensive Smart Manufacturing Solution

Residing above HMIs are “Level 3” MES and “Level 4” ERP systems. These software-based systems typically run on servers located at a given production plant, or even far away in a corporate office. Software systems at each progressively higher level are typically less “real-time” than at lower levels. While MES and ERP systems are a subject of their own, they both require close integration with lower level sensor and control systems in order to be effective.

A comprehensive smart manufacturing solution built on an IIoT foundation is necessary to power operations and business management. These IIoT building blocks can be combined to create real-word applications to deliver specific benefits, as shown in the following example.

Any time there are multiple steps in a process, it is critical to identify which steps are the limiting throughput factor. Similarly, if there is a failure, then operators need information to point them to the root cause. Smart manufacturing will harvest all of the production key performance indicators, and use them to identify bottlenecks that can be improved, and will also facilitate troubleshooting.

At the highest level, data provided via smart manufacturing allows business operators to track, direct and optimise their raw material usage and productive output. Uptime and downtime can be analysed, and inefficiencies identified and wiped out. Without the data provided by smart manufacturing systems, none of this is possible.

Putting Your Data To Work

For today’s factory, superficial good looks aren’t enough to prove that things are running at their best. Instead, additional improvement opportunities must be actively sought to create a smart factory. One way to do this revolves around obtaining more operational data and putting it to work. Any process of improvement is based on quantitative analysis of measurements, and fortunately the IIoT opens up a whole new world of quantifiable data.

Connectivity is no longer a unique luxury, as it has instead become a baseline requirement. Intelligent machinery leads to a connected factory, which in turn provides the platform for smart manufacturing. Businesses everywhere want to leverage the IIoT in the most expedient way possible, and fortunately the technology is available now to make this happen.

The building blocks are smart devices, methods for making legacy equipment smarter, robust networking, and a wide variety of software—all of which are readily available to build into new facilities or integrate into existing operations. The widespread availability and ease-of-use of these enabling technologies allows end users to focus less on how to harvest the data, and concentrate more on improving operations.

APMEN Feature, Apr 2017

Rate this item
(0 votes)
  • Last modified on Tuesday, 11 April 2017 09:37
  • font size




As Asia's number one English metalworking magazine, Asia Pacific Metalworking Equipment News (APMEN) is a must-read for professionals in the automotive, aerospace, die & mould, oil & gas, electrical & electronics and medical engineering industries.

Connect with us: