skip to Main Content
Creating a Digital Workflow: Reverse Engineering Farm Equipment with 3D Scanning

Creating a Digital Workflow: Reverse Engineering Farm Equipment with 3D Scanning

Creating a Digital Workflow: Reverse Engineering Farm Equipment with 3D Scanning

Here’s how one company was able to streamline its reverse engineering process and carve out a competitive advantage in their market. Article by Andrei Vakulenko, Artec 3D.

There are multiple reasons a manufacturer would need to reverse engineer an existing object. From recreating an original item to enhancing designs to creating entirely new products, the process of reverse engineering can help manufacturers improve their production processes and enhance product effectiveness. In fact, the ability to break down an object to see how it was created can often be a capability that entire businesses or specific services are based around – this was certainly the case for Taylor Attachments.

Taylor Attachments is a UK company that custom-designs and produces tractor headstock conversion brackets. These include attachments for farm handlers and loaders used for mounting everything from buckets to forks, grapples, saws, carriers, bale stabbers, grabbers, hitches, backhoes, tillers, yard scrapers, and more. Clients of Taylor Attachments also send them legacy equipment—equipment that is outdated, obsolete, or no longer in production—which Taylor’s specialists precisely measure and reproduce using the latest materials and technologies.

READ: A Look At How 3D Measurement Technology Helps Reduces Total Lead Time

In the past, this reverse engineering process was 100 percent manual, which meant a long seven to 12 hours of making sketches using rulers, callipers, pens, and pencils to trace out each machine part and component on cardboard and paper, before creating mock-up prototypes for testing. The entire process entailed cross-referencing and double-checking that would take anywhere from seven days up to two to three weeks (and was prone to human error as well). In total, it required one to three  weeks to create design specs for each part, throwing a huge delay into their production workflow if a prototype did not fit right away. Although spending up to three weeks per part may seem like an extended amount of time, it is the current industry average, and a timeline that many still struggle with today.

While Taylor might not have much competition in this area, many similar businesses are still using the old process described above, or a similar workflow, for their in-house manufacturing of replacement headstocks. With the help of the latest technology, Taylor saw the potential to move ahead of other businesses and carve out a competitive advantage in their market.

“The requirement to manufacture more of these products from varying sources meant that we were going to tie up far too many man hours along with encountering possible inaccuracies to make it viable,” said Mark Taylor, president of Taylor Attachments.

Upgrade Needed

The team at Taylor Attachments knew that this arduous process—requiring lots of fine-tuning before each product was ready to be shipped to the client’s doorstep—needed upgrading. Taylor had already made the transition to 3D CAD software, using SOLIDWORKS from Dassault Systemes. In researching new ways to improve their reverse engineering process, the Taylor Attachments team was introduced to Europac 3D, a company that specialises in everything 3D, including software, printers, and structured white-light scanners. Europac 3D helped Taylor Attachments make the call to extend its 3D workflow by adding 3D scanner technology from Artec 3D to accelerate its design cycles and increase the accuracy of its projects. Europac 3D recommended the Artec Eva, a 3D scanner used for capturing medium-sized objects such as an alloy wheel or a motorcycle exhaust system quickly and precisely.

READ: Digital Transformation Of The 3D Measurement Industry

When Taylor Attachments first implemented the Artec Eva into their reverse engineering workflow, they noticed improvements right away. The 3D scanning process works by flashing a grid pattern of light over an object, where it becomes distorted across the object’s surface topography. The distorted pattern is then reflected back to the scanner, where it is measured. Each flash of light provides XYZ points or polygons. As the object is scanned from various angles, the data from the multiple flashes are fused together using mathematical algorithms to create a digital model. So, instead of manually measuring and drawing parts, the Taylor Attachments team gained the ability to scan and create an exact digital 3D model of each part. With all of Taylor’s replacement headstocks being designed in-house and sold both nationwide and abroad to leaders in agriculture and industry, minimising their turnaround time so dramatically has made an immense difference—both the volume of work they’ve been able to take on and manage, as well as maintaining the utmost levels of quality that they’ve been famous for.

“Eva has literally saved us days if not weeks of work, and that’s no exaggeration,” said Taylor. “Previously we were spending all that time creating prototypes to test, then that many more hours on alterations to reach the level of perfect, compared to now achieving perfection the first time, and every time, with Eva.”

Streamlined Workflow

The new integrated workflow created using Artec Eva and SOLIDWORKS has completely overhauled Taylor Attachments’ manual processes. Aside from just the time savings with 3D scanning, there were other bottlenecks with syncing the manual measuring process to the 3D CAD work, including difficulties building relationships with other profiles on the same part, especially if there were no common features to link to. This hurdle has been easily dealt with via 3D scanning.

READ: Creaform Adds Academia 50 3D Scanner To Its Educational Solution Suite

Taylor says, “Now with Eva, it takes only about 20 minutes to scan an entire headstock, then another 20 minutes to post process everything in Artec Studio, and after that the 3D model from Studio is sent over to our in-house design team. What they do is use the Xtract3D add-in for SOLIDWORKS to create a beautiful, highly-precise 3D model that’s 100 percent ready for production.”

After this process, the model is immediately sent over to one of Taylor Attachments’ laser cutting partners, all of whom work to the highest standards. For each individual project, everything from start to finish takes less than 24 hours, a drastic difference compared to the seven days to 2-3 weeks it took before 3D scanning was implemented in their reverse engineering process.

For Taylor Attachments, the addition of 3D scanning into their reverse engineering work has been invaluable for the improvements it has brought in terms of a streamlined workflow and greater efficiency. What used to be a long, laborious, manual process is now something they can complete in less than a day’s time. Taylor Attachments left their old process behind and have welcomed in the new era of reverse engineering. 3D scanning is setting new standards for these applications, replacing antiquated, labour-intensive and error-prone techniques. In the words of Taylor, “There’s simply no going back for us.”


For other exclusive articles, visit


Check these articles out:

Creaform To Showcase 3D Scanning Innovations For Metalworking Industry At EMO Hannover 2019

3D Scanner Market To Experience Double Digit Growth Till 2022

HP Inc. And Partners Battles COVID19 With 3D Printing Solutions

Global Aerospace 3D Printing Market Poised To Surpass $2,857 Million By 2024

FARO Offers New Capabilities With CAM2 2020 Software

Easy And Fast 3D Printing: Igus Tribo-Filaments

Driving Innovation With 3D Scanning

No Longer Pressed For Time With Portable Measuring Devices

With Additive Manufacturing To More Productivity

Nissan Metal Forming Technology Can Help Keep Classic Cars on the Road

Additive Manufacturing and Journey to Industry 4.0



FOLLOW US ON: LinkedIn, Facebook, Twitter



FARO Sees Bright Prospects in Automotive Manufacturing Industry
Quality Assurance Brings New Confidence
Back To Top