skip to Main Content
Embedded motion control is a major emerging trend that's being driven by the interconnectedness of many different systems

Embedded Motion Control

Embedded Motion Control

Embedded motion control is a major emerging trend that’s being driven by the interconnectedness of many different systems, such as new edge device applications in the Internet of Things and the industrial IoT, as well as other trends such as increasing integration and miniaturisation of systems, and the spread of mobile/wearable consumer electronics – and artificial intelligence. Article by Trinamic.

Several different trends, both application related and user (engineering) related, are working together to spur the increase in embedded motion control. Even before the recent emergence of IoT and IIoT edge devices, many of these trends were already occurring.

Simultaneous increasing miniaturisation/integration and automation: One of the most important trends, and one that influences so many others, is the increasing miniaturisation and integration of systems, components, and assemblies, at the same time they are also being automated. This is also true in new miniature motor types with very small form-factors. Demand for stepper motors overall continues to rise, due in part to a rise in demand for miniature motors, according to a report by P&M Market Research reports. Although industrial machinery has been the largest market segment for stepper motors, said this report, their rising use in medical equipment, desktop manufacturing, or home automation will drive market growth by 2023.

Other applications being enabled by this trend include 3D printing, and IoT-connected devices for consumers. This latter group includes connected home devices such as window shades, blinds, and cameras for smart home systems; environmental controls such as connected thermostats; appliances; robots; drones; automotive; and consumer devices that require stepper motors. For wearables, some examples are small portable insulin pumps containing small stepper motors, which also need a wired or wireless interface and are battery driven, and virtual reality goggles.

Fostered By Industrial IoT

Growing interconnectedness fostered by the IIoT: Networks are growing. Bandwidth is growing. The amount of information exchanged over all networks, including over the Internet, is growing. Global semiconductor and technology companies are placing their highest focus on solutions for networking, for data centres, and high-bandwidth communication technologies – in global telecommunication and media, in industrial control applications, as well as in automotive and home networks.

To keep pace with this development requires more intelligent systems, including motion control and drive solutions at the network edge with standardised APIs and standard interfaces so these systems can understand and communicate with each other.

AI: Artificial intelligence is a trend on the algorithm side, in software and dedicated hardware, and it is a radical change. AI allows for intelligent and autonomous machines, it allows for systems that make decisions based on their available “information” without human control, it allows for learning/adaptive machines, and it allows for interactive machines. Because of AI, new application areas are emerging which will become commodities in a few years, such as advanced robotics in factories and in medical applications, the transportation & delivery industry, or toys. Nevertheless, to actually interact with the real, physical world – transforming digital information into physical motion and vice versa – AI-based systems require smart actuators. Such smart actuators are examples of embedded motion control systems.

Embedded motion control not only means using an embedded system for motion control tasks or implementing the motor and motion control functions in highly integrated microchips. Embedded motion control means more than just motor control. It means the whole motion control system in miniature.

Examples Of Embedded Motion Control

The design of motion control is no longer difficult or complicated: instead, it has become a set of mainstream functions, or building blocks, which can help designers reduce their development overhead. We can now embed functions and sub-blocks physically (motor, sensors, housing, physical interface) and logically (algorithms, communication stacks, dedicated hardware accelerators), combined according to an engineer’s specific application needs.

Examples of increasing integration and miniaturization can be found in Trinamic’s smart stepper controller + driver IC family, such as the TMC5130 / TMC5160 integrated motor driver and motion controller IC. The TMC5072 can even drive two motors directly out of the IC. The TMC8670 dedicated EtherCAT motion controller IC is an example of the highest levels of integration. It’s an SoC with a field-programmable gate array (FPGA) and a real MCU inside, and includes EtherCAT real-time bus interfaces, protocol stacks, plus servo motor control in a single device.

If you think about all of these trends like AI, IoT, and IIoT, it becomes clear that they are typically located more on the processing and communication side. Nevertheless, many systems need a bridge to the real world. When people think about the IoT, they think sensors and data (the cloud). However, it’s the actuators that give meaning to the IoT and make life comfortable by enabling the physical cloud, which consists of all the physical devices connected to the Internet. Embedded motion control is this bridge that connects the digital to the physical.

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Marvel Of Robotic Arms
Marposs Supports The DIGIMAN Project
Back To Top