fbpx skip to Main Content
Metrology-Grade 3D Measurements Right On The Production Floor

Metrology-Grade 3D Measurements Right on the Production Floor

In this article, Guillaume Bull discusses the insights that led to the development of Creaform’s latest optical CMM scanner.

Operator scanning an industrial mold directly on the shop floor.

Over the last few years, manufacturing companies have seen their time to market expedited due to intensified competition on the global scale. In addition, the parts and assemblies that they produce are now more complex than ever.

On the one hand, they face pressure to accelerate their workflows. On the other hand, they must meet quality standards that are constantly rising. Creaform is fully aware that today’s manufacturers are facing tremendous challenges. They know that product quality issues impact scrap rate, production ramp-up, production rate, and downtime, ultimately affecting production costs and overall profitability. Consequently, Creaform’s product development team started on their task, with their clients’ issues and needs in mind.

The objective was to develop the ideal 3D scanner that could be integrated seamlessly into any quality control (QC), quality assurance (QA), first article inspection (FAI), maintenance, repair and operation (MRO), or reverse engineering workflow, and operated by users of any skill level in any type of environment—including the production floor.

Creaform wanted to offer production and quality professionals an alternative solution to the coordinate measuring machine (CMM), where parts are usually brought for FAI and QC. By doing so, non-critical inspections could be relocated and even performed right on the production floor to offload the CMM and keep it available for inspection of crucial dimensions. Creaform also wanted to develop a tool more suited for QA, since quality issues can come from multiple parts, all with different sizes, shapes, and surface finishes. Creaform’s engineers had definitely a lot on their plate.

Faster, More Accurate, and More Versatile Portable 3D Scanner

Creaform’s engineers kept these objectives and challenges in mind when they developed the MetraSCAN BLACK. They were determined to take dimensional measurement speed, accuracy, and versatility to a whole new level.

Speed

Now featuring 15 blue laser crosses, which can take up to 1,800,000 measurements per second, the new metrology-grade 3D scanner offers a larger scanning area and accelerated scanning time. Such a measurement speed—4X faster than the previous version—ensures an optimized acquisition time and data processing rate in order to provide users with instant meshing. In short, the measurement workflow from setup to real-time scans and ready-to-use files has never been faster.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

How to Quickly, Easily and Automatically Measure Radii and Defects

Six Key Considerations When Selecting A Gantry CMM

HEIDENHAIN Presents Controls And Measuring Technology For Efficient Production

Samsung Working To Develop Its Vietnamese Supply Chain Networks

API’s Improved vProbe For Enhanced CMM Measurements Directly On Production Floor

Large-Scale Metrology For Oil Industry Production

Sheet Metal Fabricator Cuts Inspection Time by 60%

Unlock The Hidden Potential Of Your CMMs

The Importance of Automation for Networked Manufacturing and Digitisation

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Creaform Releases Optical CMM Scanner MetraSCAN BLACK

Creaform Releases Optical CMM Scanner MetraSCAN BLACK

Creaform has released its latest version of the MetraSCAN 3D lineup, the company’s advanced optical CMM scanner designed specifically to perform metrology-grade 3D measurements and inspections. As the fastest and most accurate portable optical CMM scanner, the MetraSCAN BLACK can be seamlessly integrated in any quality control, quality assurance, inspection, MRO, or reverse engineering workflow and operated by users of any skill level in any type of environment.

The MetraSCAN BLACK dimensional metrology system has been developed to measure complex parts and assemblies from an array of industries and manufacturing processes, such as automobile, aeronautics, power generation, heavy industry, metal casting, metal forging, sheet metal, plastic injection, composites, etc.

 

Featuring unmatched performance and speed for optimized 3D measurements

  • 4X faster: Featuring 15 blue laser crosses for larger scanning area that take up to 1,800,000 measurements per second and live meshing, ultimately cutting down the time between acquisition and workable files.
  • 4X resolution: MetraSCAN BLACK features a measurement resolution of 0.025 mm (0.0009 in) to generate highly detailed scans of any object.
  • More accurate and traceable measurements: High accuracy of 0.025mm, based on VDI/VDE 2634 part 3 standard and tested in a ISO 17025 accredited laboratory, ensures complete reliability and full traceability to international standards.
  • Shop floor accuracy: The MetraSCAN BLACK features a unique and patented dynamic referencing that compensates for surroundings instabilities.
  • Maximum versatility: Masters complex, shiny and highly detailed parts
  • No warm-up time: Operators can be up-and-running in minutes.
  • Touch probing capability:  When paired with the HandyPROBE, the MetraSCAN BLACK lets users harness the power of both 3D scanning and probing for a complete, streamlined inspection process.
  • Available in BLACK and BLACK|Elite: Customers can choose from two models based on their needs: speed, part complexity, accuracy, etc.

“Today’s manufacturers are facing tremendous challenges. They are under increased pressure to accelerate their time to market in order to remain competitive on the global scale. Product quality issues impact scrap rate, production ramp-up, production rate, and downtime, ultimately affecting production costs and overall profitability. Manufacturers need to rely on innovative 3D measurement technologies, like the MetraSCAN 3D, in order to refine their product development and quality control processes,” explained Guillaume Bull, Product Manager at Creaform.

“This new version of the MetraSCAN 3D takes dimensional measurement speed, accuracy and versatility to a whole new level. We believe manufacturers will appreciate its performance within their workflows.”

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Raising Productivity with Plasma Systems

NUM Launches Form Compensation Option For NUMROTO Tool Grinding Software

Innovating Shopfloor Inspection: A Look At The Next Generation CMM

Hexagon’s Absolute Arm Now Features 3D Laser Scanner

Creaform To Showcase 3D Scanning Innovations For Metalworking Industry At EMO Hannover 2019

Hexagon Enhances Portfolio For CMM With Swift-Fix Chucks

6 Points To Better CMM Maintenance

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

3D Scanning Prevents Production Downtimes

3D Scanning Prevents Production Downtimes

Digitalisation and measurement made it possible to modify mould inserts and allow them to be exchanged, thus avoiding downtime for this manufacturer. Article by GOM.

Triple Scan Principle. (Image source: Lometec)

In the past, measurement service provider Lometec had ‘merely’ conducted some workpiece first-sampling for one of its customers, a well-known medium-sized plastics processor. But when an urgently needed, brand-new tool suddenly failed, the metrologists moved out on a special mission: Delivering overnight service, they digitalised the mould tools using GOM scanning systems so that precise, rapid reworking was possible. The impending default on delivery was averted.

Lometec’s customer produces, among other things, thermoplastic weather-proof housings designed for use in extreme climates. When the quantities in demand began exceeding the existing tool’s capacities, the company commissioned construction of a second, identical tool—and that’s where the trouble began.

Tool Failure After Passing First Sampling

At first, everything was looking hunky-dory: The new tool was delivered and worked just fine, as verified by Lometec as part of first sampling of the housing. The 3D measurement service sampled 125 parts and recorded the results in the initial sample test report (ISTR). Process capability was validated and the plastics processor was able to produce with two tools at once, doubling output as desired.

But shortly after starting mass production with the second tool, it proved prone to faults: Sliders and inserts began seizing. The tool manufacturer responded promptly to the complaints and supplied spare parts—but these did not match precisely, making it impossible to simply exchange them, never mind swapping over the sliders and inserts between the two tools.

The Solution: Scan and Rework—ASAP

This gave the plastics processor the idea to have Lometec digitalise and measure the 14 affected mould inserts and sliders. The measuring data would then be used to rework the imprecise spare parts.

Lometec Managing Director Jörg Werkmeister remembers, “Our job was to compare the old inserts with the new ones and return all of the inserts to the company again as quickly as possible, so they’d be able to keep on producing with one tool at least. Having both tools measured was naturally stopping production completely.”

No sooner said than done: being specialists for rapid optical 3D measurement, Lometec was confident they had what it took. The measurement service maintains two fully climatised measuring rooms and uses measuring equipment by renowned German manufacturers, including three GOM systems for full-field digitalisation of technical mould halves.

“We set up the 3D scanning lab completely from scratch in 2016, it’s absolutely state-of-the-art,” Werkmeister says. “Our trio of ATOS Triple Scan, ATOS Core and ATOS ScanPort means we’re excellently equipped for a diverse range of digitalisation jobs.”

Investing in GOM technology had been very good decision, Werkmeister goes on to say. “The measuring data the systems supply are outstanding.”

To meet the demand for promptness, two metrologists tackled the plastics processor’s job in tandem: one working with ATOS Triple Scan, the other with ATOS Core.

Before conducting the measurements, the metrologists cleaned the sliders and inserts, removing residues such as grease and the like. Next, they applied high-precision reference point markers. These ensure that the software joins the separate scanned images correctly.

“For digitalisation, we chose really small increments,” says Werkmeister. This achieved high detail resolution.

To continue reading this article, head on over to our Ebook!

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Are Cheaper CNC Machine Tools More Cost Effective?

Complete Measurement Solution for Consistent Quality Management

No Longer Pressed For Time With Portable Measuring Devices

A Look At How 3D Measurement Technology Helps Reduces Total Lead Time

Hexagon Enhances Portfolio For CMM With Swift-Fix Chucks

Faro: Factory Robo-Imager Mobile

Hexagon: Time-Saving And Productivity Enhancements In Latest VISI

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

High-precision Layer Work

High-precision Layer Work

Find out how MBFZ toolcraft ensures holistic quality control and precision in additive manufacturing. Article by ZEISS

Frederik Mack, Materials Engineer at toolcraft, examines a test specimen under the ZEISS Axio Imager microscope, which he sawed out of a 3D-printed part and ground.

Additive manufacturing is an uncharted territory for many companies, but not for MBFZ toolcraft GmbH. The company in Georgensgmünd, Southern Germany, manufactures high-end precision parts for the aerospace, automotive, medical technology and semiconductor industries, among others, and since 2011 also parts using 3D printing. The young established production technology is a challenge for quality assurance. Toolcraft is mastering this challenge with ZEISS 3D ManuFACT, the only solution on the market for continuous quality assurance in additive manufacturing.

Heat, noise, the smell of oil: They belong to industrial manufacturing like Yin to Yang. Yet this is quite different in the glass hall at toolcraft in Georgensgmünd. Anyone who has access to the area with their employee ID card hears nothing. They smell nothing either. There are few reminders of factory life as we have known it for a hundred years, because parts are not manufactured the way they have been for a hundred years. Instead of peeling the mold out of cast or forged metal blocks by drilling, milling and turning, additive manufacturing comes at the process from the other way.

Through small windows on the twelve 3D printing machines at toolcraft, you can watch glistening laser beams dancing over a wafer-thin layer of metal powder. Where the spot of light hits, the powder melts in a flash and immediately solidifies again, followed by the next layer. Thousands of hair-thin layers are used in 3D laser melting to create „impossible“ components that could never be produced with traditional subtractive manufacturing. Whereas ten years ago only prototypes and design studies were produced by using additive manufacturing, manufacturers of aircraft turbines, racing cars or medical equipment are increasingly incorporating them directly into their series products. 

Challenges for Quality Assurance

As always, when a new technology emerges in a market, there are always questions. One of them is quality assurance. Jens Heyder points to a monitor that shows two images taken with the ZEISS Axio Imager light microscope at 50x magnification. On the left you can see a section of a good component. There are no large defects visible, only small pores. The material has an even, homogeneous structure. On the right, there is a cross cut shown, in which blowholes and welding defects are present. The construction process here was not optimal, which is why errors occurred during solidification of the melt.

“Crack formation could occur under high loads,” warned Heyder, who has been working as a material engineer in toolcraft’s materials laboratory for three years. Together with his colleagues, he checks the grain size distribution of the metal powder used. They help to optimize the manufacturing process in such a way that no defects occur in the part during melting and solidification. 

However, the materials laboratory is only one component in the seamless quality assurance at toolcraft. Each process step is followed by a test: when a part comes out of the printer, after heat treatment and finally after milling into the final form, before the part is sent to the customer. Not every part is inspected. Random samples are taken according to customer requirements where typical parts only undergo a final inspection. For more demanding customer requirements, such as the aviation industry, 100 percent inspection and precision is required. 

But one thing is for sure: when a part is inspected, it is done on a machine with the ZEISS logo. These can be found in several places in measuring rooms and in production at the company: two microscopes (ZEISS Axio Imager and ZEISS Axio Zoom.V16), several coordinate measuring machines (two ZEISS ACCURA, one ZEISS CONTURA and one ZEISS DuraMax) as well as an optical 3D scanner. Although the latter bears the GOM logo, the company also belongs to the ZEISS family since spring 2019.

 

To continue reading this article, head on over to our Ebook!

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Intelligent Machine Software For Improved Precision Machining

Hexagon And Ericsson Host Joint Webinar On The Role Of 5G In Industry 4.0

The AMable Project Promotes Flexible AM Solutions To Fight The Coronavirus

Driving the Next Industrial Revolution

NAP 2020 Drives Malaysia’s Automotive Sector

A Look At How 3D Measurement Technology Helps Reduces Total Lead Time

Driving For A Better Tomorrow Hexagon Manufacturing Intelligence

Large-Scale Metrology For Oil Industry Production

ZEISS Acquires GOM To Furthers Its Goal of Technological Leadership in Industrial Metrology and Quality Assurance

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

The Importance Of A Calibrated And Traceable Artefact

The Importance of a Calibrated and Traceable Artefact

What is the most accurate way to check if a measuring tool works within its specifications? Guillaume Bull, product manager at Creaform, explains in this article.

When replacing old measuring equipment, it is common to validate that both the old device and the new device measure the same data and provide quality control (QC) with the same results. To do this, correlation tests are performed.

To facilitate and speed up the work, it is tempting to test a regularly manufactured part. After all, its specifications are well known. However, this choice of part may lead to a false diagnosis and an incorrect conclusion regarding the accuracy of the new measuring device.

Therefore, the most accurate way to check if a measuring tool works within its specifications is to use a calibrated artefact for which measurements have been previously validated and the data is traceable.

READ: Quality Assurance Brings New Confidence

Using a common artefact for the old device and the new device helps to minimize the variables that can influence the correlation tests. Among these variables, which will induce measurement differences, are the extraction methods that are different from one technology to another, the alignment methods that are rarely the same, software that does not process or calculate data in the same way, the setups that are generally different depending on the technologies, and the environment that, if not maintained exactly the same, will greatly influence the measurements.

Using a calibrated and traceable artefact enables operators to validate that both devices work within their specifications. As a result, if the measurements taken on this calibrated artefact give the right value, we will know for sure that the measuring devices work properly.

Scenario

A manufacturing company working in the automotive industry wants to replace its CMM with a 3D scanner. In order to validate the new equipment, a correlation test is performed between the two devices—the old and the new. When the two measurements are compared, there is a difference; the instruments do not correlate with each other. Why? Should we not get the same measurement on both instruments? What is causing this difference? Since we know that the old equipment has been accurate historically, should we conclude that the new equipment has an accuracy issue?

READ: Optimising Aerospace Parts Manufacturing

When testing for correlations between two types of equipment (i.e., comparing the measurements obtained on the same part with two instruments), there are many variables that can induce errors in the measurements. These variables include extraction and alignment methods, software calculation, setup, and environment.

Extraction Methods

We measure the same part, but we do not extract the same points with one measuring tool as we do with the other tool. The consequence is a difference in measurement due to the imperfection of the geometry of the part. Indeed, when we probe a surface plan by taking a point at the four corners, this method does not consider the surface defaults of the plan. Conversely, if we scan this plan, we measure the entire surface and get the flatness. Therefore, if the surface has a slight curve, the scanned plan might be misaligned compared to the probed plan. Thus, there will be a difference in measurement between the two methods.

Alignment Methods

We measure the same part, but we use two different methods of alignment. The consequence is a slight difference in the alignment method, which can lead, due to leverage, to large deviations at the other end of the part. Even if the same method of alignment is used, as mentioned above, a difference in the extraction method of the features used in the alignment can lead to a misalignment of the part. The positioning values are based on the alignment, which must not differ from one instrument to another, neither in the construction method, nor in the way it is measured.

Software Computation

We measure the same part, but we use different software that does not use the same algorithms for data processing. The consequence is a difference in the calculation of a feature from the software, even though the measured data is the same. The more complex the construction of the measurement is, the more likely it is to have deviations between calculations.

READ: A Guide to Machining Better Castings Through Optical Metrology

Setup

We measure the same part, but we do not have the same setup on both instruments. The consequence is different measurements of this same part. For example, a part of large dimensions is measured on a CMM. The marble on which the part is placed has an excellent flatness (30 microns). The same part is then measured with a 3D scanning system. But the surface on which the part is put has a different flatness (800 microns). As a result, the part twists and deforms slightly when placed on the second marble. Although the same part is measured, the two setups give different measurements because the support surfaces have different degrees of flatness.

Environment

We measure the same part but under different conditions. The consequence is a difference in the measurements. Indeed, if we measure an aluminium part of one meter on a CMM at an ambient temperature of 20 deg C and we measure the exact same part at 25 deg C, then the difference in temperature will result in a lengthening of the part by 115 microns at 25 deg C.

Common Artefact

It is crucial for quality control to minimize these different variables that could lead to correlation errors. The easiest way is to use, on both instruments, a common artefact for which measurements have been previously validated and the data is traceable.

Artefacts have the distinguishing characteristics of being calibrated and traceable. All features have been previously measured and verified in a laboratory, eliminating any doubt and uncertainty regarding measurements.

READ: Creaform Launches 3D Scanning Solution Suite for the Aerospace Industry

Conclusion

A value commonly obtained with a traditional measuring instrument is not a reference value that can be relied upon 100%. The reason for this is that equipment is not an artefact. There is always uncertainty associated with any measuring instrument. Therefore, the verification, validation, or qualification of a measuring instrument cannot be done with any part for which dimensions have not been previously validated.

The only way to certify that a measuring tool works within its specifications is to compare it with an artefact whose dimensions are calibrated in a known laboratory. Only an artefact makes it possible to correlate measurements between equipment because only an artefact can subtract all the variables that could interfere with the measurement. Thanks to an artefact, there is no doubt; the equipment measures accurately.

If two devices get the same measurement with an artefact, but do not correlate on a specific part, then the difference is not attributable to the instruments. Rather, it will result from measurement processes that will need to be checked and scrutinized further to obtain the desired measurement.

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Tackling Shop Floor Inspection Challenges

ZEISS Completes GOM Acquisition

Hexagon Touch Probe Transforms Thickness Measurement on Machine Tools

Complete Measurement Solution for Consistent Quality Management

FARO Sees Bright Prospects in Automotive Manufacturing Industry

Speeding Up And Simplifying Solutions

Creaform Launches 3D Scanning Solution Suite for the Aerospace Industry

Ensuring That A Propeller Keeps A Heart Beating

Blum-Novotest To Highlight Measuring, Testing Technology at EMO 2019

Haimer: Microset Tool Presetters

Hexagon Intros Modular Metrology Fixtures to Online Shop

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

A New World Of Laser Tracker Scanning

A New World of Laser Tracker Scanning

Here’s a look at the development path of the world’s first direct scanning laser tracker. Article by Joel Martin, Hexagon Geosystems.

Manufacturing innovations have often been the driving force behind new developments in the field of metrology—the science of measurement. New combinations of hardware and software are allowing engineers to solve problems in new ways that simply weren’t possible before.

In the late 1990s, technological advancements delivered a new device known as the laser tracker, which has gone on to establish itself as a worldwide standard for large-scale alignment and verification tasks. A laser tracker is a portable coordinate measurement machine (PCMM) that uses a laser beam to accurately measure and inspect the features of an object in 3D space. This beam is sent to a spherically mounted retro-reflector touching the object to measure two angles and a distance, thus calculating its position and defining it with an X, Y, Z coordinate.

Laser trackers were quick to find their home in large-scale manufacturing, largely because no other measurement solution could accomplish such tasks. They allowed engineers to perform wing-to-body alignments or even tooling verification faster and more accurately than ever before. But the first generation of laser trackers had their own special issues, such as when line of sight between the laser tracker and the reflector was interrupted and the operator would have to walk the steel sphere back to a home position to pick up the laser beam from the tracker.

This limitation reduced operator efficiency, and consequently cost money, especially if the reflector was being tracked from a distance of some 20m away. While workarounds were available, it was not uncommon to see the connection interrupted repeatedly if there were physical obstacles in the work area such a workers or cables.

The solution to this issue was first provided by Hexagon in 20XX when the PowerLock feature was first introduced to their Absolute Tracker range of laser trackers. However, laser trackers still required the skilled hand of a well-trained operator to deliver reliable results.

A Breakthrough Driven by Automotive

The next great development in the history of laser tracker systems came after a major automotive OEM challenged several metrology leaders to design a system that could track a handheld device capable of non-contact scanning a surface around an area the size of a car with tracker-like accuracy.

Although it wasn’t immediately met, this challenge was behind the introduction of the first large-volume wireless probe, which worked like a “walk around CMM” by allowing the operator to use its common stylus to measure a part in a way similar to using a CMM or portable measuring arm.

This breakthrough was made possible by the introduction of a new type of laser tracker that, rather than simple 3D measurement, could measure with “six degrees of freedom”. These “6DoF” laser trackers, the first of which was the landmark Leica Absolute Tracker AT901, were capable of measuring not just a single point, but an orientation around that point about a full six axes.

Most importantly, from a productivity standpoint, this new device allowed the measurement of hidden points within recesses, or simply points on the back side of the measurement object, without repositioning the laser tracker.

Early benchmarks showed that this new probing capability could provide an increase in throughput of up to 80 percent over traditional reflector measurement. This technology created such a dramatic shift in the way objects were measured that the reflector—the very tool that had until now been key to the functionality of the laser tracker—ended up being used far less often for measurement tasks.

Introducing Scanning

The idea of surface digitisation with a laser tracker is nothing new; an operator in 1995 could be seen dragging a reflector over the surface of an aerostructure to create a simple point cloud. But the introduction of the 6DoF tracker opened up the possibility to take this a giant leap further.

But laser tracker based large-volume scanning has accelerated over the past six years. An example is a laser scanner with extreme speed that is tracked by a laser tracker and attached to a commercial of-the-shelf robot. This scanner-tracker integration effectively turns a standard robot into a very accurate shop floor measuring machine.

This fundamental shift in measuring from physically touching a part to measure it to “just scanning it” has allowed manufacturers to completely rethink their metrology workflows and equipment.

At around the same time that 6DoF probing and scanning was changing the workflows and typical applications of laser trackers, 3D terrestrial laser scanning was beginning to find its first applications in large scale manufacturing. This high-speed LIDAR scanning technology was originally deployed for geospatial land surveying, allowing an operator to collect millions of points very quickly in the course of capturing the surface of buildings or the surrounding landscape.

On the other end of the spectrum, there are handheld scanners with an ultra large stand-off area of up to three feet with a scan line of over two feet wide that captures huge amounts of data very rapidly. Other contemporary scanners allow the operator to measure objects the size of an average car from a single station (position) in less than 30 minutes. The need to scan very large objects quickly with metrology-grade accuracies has driven different manufacturers to integrate their laser trackers to several different scanners. In addition to the hand scanners described above, there are also examples of structured light scanners located by laser tracker, as well as terrestrial laser scanners using laser trackers to control their global accuracies.

The Industrialisation of Terrestrial Measurement

Laser trackers have the inherent ability to hold very tight tolerances over very large distances. This important feature renders the marriage of laser trackers and terrestrial laser scanners as a natural progression. Terrestrial laser scanners can measure millions of points very quickly, but it can be a challenge to register these point clouds together while maintaining metrology grade accuracies. It is exactly this need that lead the industry to another advancement in laser tracker technology—a scanning absolute distance meter that pushes laser trackers into the next level of usability. A scanning ADM that measures at an internal rate of over one million points per second is now integrated in a new line of laser trackers. The technology can register submillimetre noncontact surface scans with metrology grade SMR laser tracker measurements—all within a single battery powered IP54 sensor for factory floor usage or remote outdoor applications. This new product line effectively bridges the gap between laser trackers and lidar scanners.

Looking to the Future

Manufacturing has changed dramatically since that aerospace engineer was tasked with aligning the wings to the fuselage of the 747 more than 50 years ago. The modern airplanes replacing this legendary gem require an increasing amount of data-driven processes with an even higher level of precision was achievable before. In the past, some level of misalignment in the aerostructure could simply be “trimmed out” during flight testing, but today that equates to inefficiencies of the aircraft. To reach the fuel efficiency requirements of the burgeoning aerospace industry, new inspection processes and technology must continue to advance.

I have been involved with laser trackers since the early days and witnessed the evolution of this solution as it has grown and matured at a consistent rate. It has been amazing to watch some of the smartest minds in metrology push the power and usage envelope on this technology, considering its humble roots. Today, laser trackers are utilized in almost every type of large-scale manufacturing from aerospace to power generation. The emerging trend towards noncontact scanning is pioneering another giant leap for a technology that seems to have no limits.

 

Read more:

Hexagon’s Absolute Arm Now Features 3D Laser Scanner
Hexagon Launches QUINDOS 2019.2
Faro Launches Cobalt Design Structured Light 3D Scanner
How Industrial Robots Increase Sawing Productivity
New High-Definition Feature Scanner For Automated Inspection

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Creaform Adds Academia 50 3D Scanner To Its Educational Solution Suite

Creaform Adds Academia 50 3D Scanner To Its Educational Solution Suite

Creaform has added the ACADEMIA 50 3D scanner to its ACADEMIA educational solution suite. This professional-grade, portable 3D scanner is the ideal solution for teachers looking to show students the benefit of handheld 3D scanners and their use in real-life applications, such as reverse engineering, industrial design and quality control.

Easy to set up and use by teachers and students of all levels, ACADEMIA 50 uses structured white light technology to scan objects made of any material, surface type or colour. Its technical specifications highlight its performance levels, with an accuracy of up to 0.250 mm (0.010 in) and a measurement resolution of up to 0.250 mm (0.010 in).

ACADEMIA 3D scanners are part of a turnkey educational solution that includes: 50 free seats of scan-to-CAD and inspection software to show students how to address any conventional or innovative engineering workflow, five-year ACADEMIA Customer Care Plan and self-training documentation. Creaform offers teachers a free Creaform ACADEMIA Sample Kit that gives academics didactic material to enhance their curricula.

“This latest addition to our ACADEMIA educational solution suite attests to Creaform’s commitment to the educational sector by offering the designers and engineers of tomorrow the tools they need to help them excel in their careers,” said François Leclerc, Marketing Program Manager at Creaform. “We offer a complete education solution that does not sacrifice on quality or performance — all at a cost the educational institutions can afford.”

 

Check out other articles:

Faro Launches Cobalt Design Structured Light 3D Scanner
3D Systems And GF Machining Solutions Expand Partnership
PTC & Stratasys: 3D CAD Software

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

Creaform 3D Scanner Meets Boeing’s Quality Requirements

Creaform 3D Scanner Meets Boeing’s Quality Requirements

Creaform’s HandySCAN 3D metrology-grade 3D laser scanner can now be used for recording physical attributes of aircraft dents and blends on all models of Boeing commercial airplanes.

In a service letter released by Boeing on the guidance on use of 3D scanners for measuring dents and blends on airplanes, the SmartDENT 3D solution and the HandySCAN 3D scanner were used in the process of guiding Boeing’s quality requirements.

The SmartDENT 3D is 80 times faster than the pit gauge technique. It is the fastest and most reliable aircraft surface damage inspection tool available on the market; accurate to 0.025mm; and has a resolution of up to 0.1mm with high repeatability and traceable certificate. Weighing less than a kilo, the handheld scanner is the perfect tool for work in hangars or directly outdoors. Users can easily perform 3D surface inspection of any part of an aircraft on which they would use manual techniques—including on and under wings.

In addition to complying with Boeing’s service letter, Creaform HandySCAN 3D scanners are listed in the Airbus Technical Equipment Manual, which is referenced in its Structure Repair Manual.

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

3D Scanning Streamlines Production Process

3D Scanning Streamlines Production Process

Tolerances on blade production tightened as OEMs drove to differentiate themselves by offering high performance lawn and garden products. To achieve customer goals, Blount International knew they had to incorporate more automation into their quality inspection process.  Article by Mark Thomas, Marketing Director, OGP.

As a leading manufacturer of equipment, accessories and replacement parts for the lawn and garden market, Blount International was looking to improve their profitability and exceed their customer delivery expectations. They were faced with the problem of how to economically produce a variety of nearly 1,900 different OEM lawnmower blades. The large selection of blades required by their OEM customers meant short production runs and multiple tooling changes each day. Their goal was to improve product quality while controlling costs and meeting shipment commitments.

Tolerances on blade manufacturing tightened as OEMs drove to differentiate themselves by offering high performance lawn and garden products. To achieve customer goals, Blount knew they had to incorporate more automation into their quality inspection process.

The Need For 3D Metrology Scanner

The company had always used traditional methods of measurement such as hand callipers and height gages to verify the conformance of its mower blades to customer specifications. The company’s Engineering Manager, Brian Brunk, believed that complex product features could be measured more efficiently with a 3D metrology scanner that can quickly and accurately verify part dimensions, regardless of shape complexity.

A ShapeGrabber 3D scanner from OGP was selected because of the ability to provide fast, accurate, noncontact measurements of nearly any material or shape without the need for special tools or fixtures. The scanner was also large enough to handle the largest Blount product offering.

Compared to conventional tactile CMM techniques, measuring one point at a time, 3D scanners capture millions of surface points on even the most complex geometry parts, and can quickly compare the results to a CAD design. Deviations from the CAD design are easily identified, making tooling acceptance decisions fast and accurate – meaning part production can start sooner, and with higher confidence.

Beneficial To Entire Production Process

Graphical models of ShapeGrabber measurements make part quality decisions easy without tying up other measuring systems. Melissa Rice, Continuous Improvement Coordinator at Blount detailed their process with the ShapeGrabber system: “Before we release a new die for production, we do a capability study to prove the accuracy of the die and qualify the tooling. ShapeGrabber provides the ability to do that through automation rather than manual inspection. ShapeGrabber has assisted us in improving our first-pass yield. When we can produce a quality part the first time, the entire production process benefits.”

For in-process inspection, the ShapeGrabber system has been proven to be easy-to-use and highly automated. After an initial scan, the same scanning parameters may be used for subsequent parts, delivering consistent results irrespective of operator skill or experience. Ease-of-use is manifested daily as dozens of production personnel routinely use the scanner, each having just minimal training.

Culture Of Quality

An unexpected benefit of the ShapeGrabber scanner system has also been reported: it is supporting a “culture of quality” at Blount. Employees are taking more ownership of the products and their quality. “The 3D scanner has engaged the people who use it more than they were engaged before. Now, we see employees taking more ownership of the products and their quality throughout the manufacturing organisation,” remarked Mr. Brunk.

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Precision For Guaranteed Stability Using 3D Scanners

Precision For Guaranteed Stability Using 3D Scanners

Precision For Guaranteed Stability Using 3D Scanners PERI checks key components for formwork and scaffolding systems with ZEISS COMET and ZEISS T-SCAN. Article by Carl Zeiss.

“There is always something being built here,” said Daniel Steck as he enters the extensive premises of PERI, one of the world’s largest producers and suppliers of formwork and scaffolding systems. Together with a colleague, Steck is responsible for measuring technology at company headquarters in Weißenhorn, Germany. Prototypes, reference gages and initial samples all make their way to his measuring lab.

When Steck joined the Quality Assurance department three years ago after studying to become a mechanical engineer, the company was still performing manual measurements with a profile projector. This was not only time-consuming, but also meant the measuring results could not be reproduced. “Each person had their own approach to measuring which led to different results,” recalled Steck. This is a common problem with manual measurements.

As the functionality of in Weißenhorn inspected component has to be guaranteed so that they can later be used without any problems, the company had to find a solution everyone could count on. “Ultimately, it comes down to making sure people are safe when constructing framework and scaffolding.”

Precise Acquisition Of Component Geometry With Optical 3D Scanning Systems

“We use the parts we produce ourselves as much as possible,” explained the quality assurance expert. For example: a ledger UH – the horizontal bar on the scaffolding – comprises a pipe, wedges, and wedge heads welded to both ends. This ledger UH is later mounted between the scaffolding uprights. The shape of the individual components ensures a secure fit. The resulting tension is essential for the stability of the entire solution: “Without this, the ledgers might come loose.”

Thus, PERI employs this design for all its scaffolding worldwide. To ensure optimum quality, all components are first measured individually and then again following assembly – the exact tolerances are specified in the design drawings. A thorough inspection requires an extremely exact capture of the entire component geometry.

PERI first conducted a benchmarking analysis and opted to purchase an optical solution that would meet their special requirements. They quickly set their sights on ZEISS and immediately decided to purchase two measuring systems for inspecting the entire spectrum of PERI components: ZEISS COMET and ZEISS T-SCAN. Steck was pleased with this decision. “Learning to operate these user-friendly systems was no sweat. That helped me a lot when I was still learning the ropes,” said Steck, who started using the new systems as soon as he joined the department.

He measures the smaller, individual parts like ledger heads and wedges with the ZEISS COMET. The fringe projection system captures data at a rate of 1.25 megapixels per second with great precision, speed, and largely automatically.

The parts are positioned on the rotary table and fixtured as needed. After that, the measuring system runs automatically: “It is really great knowing you can trust the system, freeing you up to do other things during the measurement.”

Measurement Of Larger Components With The Hand-Held Laser Scanner ZEISS T-SCAN

With ZEISS T-SCAN, Steck measures larger components like formwork elements and the aforementioned ledgers UH. He takes the manual laser scanner and first measures the ledger pipe by itself and later the entire welded construction, including ledger heads.

“This is also quick and easy,” he reported. Steck demonstrates how ZEISS T-SCAN achieves the perfect measuring distance, using a green dot that intersects with the red laser stripe. He then moves the scanner over the upper and lower side of the component just once.

Generating precise, repeatable results is particularly important for initial inspection. “We have suppliers from all over the world. They receive standard test protocols with the measurement reports created with the ZEISS systems – this way, everyone is on the same page if any improvements are necessary.”

If the component meets PERI’s specifications, then random sampling is performed at regular intervals. The same process applies to new potential suppliers. During the approval process, inspection gages are created for individual components so that the team in the Incoming Goods area can perform quick, reliable measurements to check the products’ dimensions and functionality.

The quality of the inspection gages is also checked with the ZEISS measuring systems prior to use, and these are then recalibrated regularly.

Reconstruction of CAD Data With Reverse Engineering

In addition to these standard requirements, reverse engineering is also part and parcel of the engineer’s work. “Until now, reverse engineering has simply not been an option when dealing with old tools and their replacement parts. Often there are not any design drawings available.” That is why Steck scans these older components with the ZEISS COMET to create drawings based on these precise 3D models, including the exact tolerances. “For us, this is more than just reverse engineering – this is how we keep knowledge in the company.”

 

Check out these articles:

Faro Design ScanArm 2.0

Boosting With Scanning

CNC Market Outlook: 7.3% CAGR During 2019-2023

Creaform Launches 3D Scanning Solution Suite for the Aerospace Industry

igus Coating Technology Makes Abrasion-Resistant Metal Components

Hexagon Intros Modular Metrology Fixtures to Online Shop

How Can Portable CMMs Help Improve Machine Shop Workflow?

Kennametal Makes Hard Turning More Cost-Effective

Sigma Labs Expands To Europe; Patent Granted To Monitor Additive Manufacturing Processes

Perfect Combination – New Hybrid Laser Measuring System

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

  • 1
  • 2
Back To Top