skip to Main Content
EOS: Additive Manufacturing For The A350 XWB

EOS: Additive Manufacturing For The A350 XWB

Here’s how one company was able to develop a cable mount on the front spar of the vertical stabilizer for a passenger aircraft in record time. Article by EOS GmbH.

Unified design of the additively manufactured tail bracket eliminates 30 parts down to one. (Source: Sogeti)

The moment when a completely new commercial aircraft takes to the skies for the first time is always special—and this was especially true of the Airbus A350 XWB. As a child of the new millennium, it was clear from the very beginning that development work would focus on innovative materials and production processes—the goal was no less than to build the world’s most efficient aircraft.

As a technology of the future, additive manufacturing was another possibility that needed to be considered during development. As part of a pilot project, experts from Sogeti High Tech succeeded in developing a cable mount on the front spar of the vertical stabilizer for the passenger aircraft in record time, taking only two weeks from the initial sketch to the finished part. EOS technology and expertise was a pivotal aspect of this development process.

Challenge

The project specifically involved producing a cable routing mount for the latest Airbus model. The mount was ultimately needed for the power supply and data transportation of a camera located in the vertical stabilizer, providing a view of the outside to passengers and orientation on the ground to the pilots. The product requirements document called for a functionally operational component suitable for series production. This task was entrusted to Sogeti High Tech, a wholly owned subsidiary of Cap Gemini S.A.

The particular challenge in this case was the short lead time of just two weeks. The entire development had to be completed within this time frame: From analysis of the part and of the current installation set-up, a parameter study aimed at optimizing the topology and its interpretation, and the design and production of the finished part. The mount also needed to have as few support structures as possible to avoid post-processing. In addition, the specifications for the component called for integration of the snap-on cable holder, weight reduction, and compliance with the strict requirements for subsequent aviation industry certification.

The conventionally produced component was made up of formed sheet metal parts and numerous rivets—more than 30 individual parts in total. The plug connectors in the upper area were made from plastic, and thus from a different material than the other individual parts of the mount. The aim was to develop an integrated solution consisting of a single part that also included the plug connectors, thereby significantly reducing construction and installation times. The weight reduction target for additive manufacturing was determined by a parameter study based on topology optimization.

Solution

For the new component, Sogeti High Tech followed the tried-and-tested development process for designing additively manufactured parts. The project kicked off with an analysis of the existing, conventionally produced component in terms of the upcoming manufacturing process—with an extremely positive outcome. The component’s functionality, material, and previously complex structure made it an ideal candidate for powder-bed-based 3D printing technology from EOS. The design freedom offered by this technology allows complex structures to be produced in a single piece, meaning that a weight-saving design can be selected without neglecting functional integration.

This analysis then allowed the so-called design space—the space that the cable-routing mount may occupy—to be defined. The aluminium alloy AlSi10Mg, which is ideal for thin-walled, complex structures, was chosen as the material. The interfaces to the external areas remained the same, forming the non-design space, meaning that no changes are needed to be made to them. The defined loads were taken as the boundary conditions for topology optimization in the parameter study, providing the basis for a new design.

As is customary, CAE software was used for the topology optimization calculations; by contrast, a dedicated solution for designing structures with free-form surfaces was used for the re-design. Sogeti High Tech created the design itself. In order to meet the lead time of two weeks, EOS calculated the build time and optimized parameters from the topology optimization results using the EOSPRINT software, which created the CAE implementation for the manufactured part while also taking into account the possibilities and limitations of the manufacturing process and the need to avoid support structures.

“In addition to outstanding hardware, EOS also offers comprehensive expertise in making additively manufactured components reality—something that we rate very highly,” says Carlos Ribeiro Simoes, Additive Manufacturing Offering Leader at Sogeti High Tech.

Results

Thanks to the cooperation between Sogeti and EOS, it was possible to develop a component optimized for additive manufacturing that fully exploits the design freedom afforded by direct metal laser sintering (DMLS) technology, while at the same time taking account of its restrictions. This allowed plug connectors for cable routing to be integrated into the design and local reinforcement to be incorporated in specific critical areas in order to optimize the structure. Self-supporting apertures and struts within the component help to keep the effort, and hence, the post-processing costs to a minimum.

Additionally, the mount can be produced extremely fast, whenever it is needed. Manufacturing—performed on an EOS M 400 with layer thicknesses of 90 μm—only takes 19 hours instead of the 70 days previously required. This corresponds to a reduction in the production time well in excess of 90 percent. This is largely because the many individual steps and formerly 30 parts have been brought together in a central component that can now be produced in a single run. In addition, the individual parts no longer need to be constructed and held in stock, which can be expensive. Storage for the entire component assembly is now also much more straightforward.

Sogeti was not only able to save a huge amount of time in production, but also in development. The entire process from the initial sketch to the finished component took only two weeks. This is a phenomenal lead time. At the same time, the design also means greater weight efficiency. Whereas the conventionally manufactured original part weighed 452 g, the additively manufactured cable mount weighs just 317 g—and it is well known that the aviation industry counts every single gram in the interest of cutting fuel consumption to a minimum. The customer, Airbus, was more than satisfied with the results.

“Getting an existing component ‘AM-ready’ in just two weeks meant that we had to succeed at the first attempt. The excellent, proactive collaboration with EOS made this ambitious undertaking possible—with outstanding results,” says Simoes.

 

Check these articles out:

Siemens Expands Additive Manufacturing Portfolio Through Acquisition Of Atlas

A Look At How 3D Measurement Technology Helps Reduces Total Lead Time

Autodesk and Airbus Demonstrate Impact Of Generative Design On The Aerospace Industry

Mazak: Addressing Labour Issues Through Machine Intelligence and Automation

Sandvik And Renishaw Collaborate To Qualify New AM Materials

E-mobility, Additive Manufacturing Driving Growth in Metrology Sector

Amada Miyachi Europe Releases New Welding Power Supplies

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Creaform Launches 3D Scanning Solution Suite For The Aerospace Industry

Creaform Launches 3D Scanning Solution Suite for the Aerospace Industry

Creaform has released HandySCAN AEROPACK, a 3D scanning solution suite that addresses the specific challenges of aircraft quality control, such as assessing damage from hailstorms or aircraft incidents as well as flap and spoiler inspections. The HandySCAN AEROPACK can also be used for reverse engineering, maintenance and repair operations, and designing hard-to-acquire spare parts.

The HandySCAN AEROPACK solution includes: HandySCAN 3D, a metrology-grade, portable 3D scanner designed to acquire accurate, repeatable and reliable measurements—even in difficult environments, such as aircraft hangers or shop floors, and with both complex surfaces and parts of all sizes; SmartDENT 3D, an aircraft surface inspection software for assessing aircraft flaps, spoilers, fuselage, etc.; VXinspect, a dimensional inspection software module for quality control workflows and inspection reports; and VXmodel, a post-treatment software module to finalize and further process 3D scan data in any CAD solution.

Intuitive and easy to use by operators of any skill level, Creaform’s HandySCAN AEROPACK makes quality control and reverse engineering processes very efficient by reducing user impact on measurement results and accelerating generation time for final reports or CAD designs. Featuring unmatched performance, HandySCAN AEROPACK never compromises on diagnosis results or safety.

HandySCAN 3D is listed in the Airbus Technical Equipment Manual, which is referenced in its Structure Repair Manual. It is also part of Boeing’s Service Letter, meaning it can be used for recording physical attributes of aircraft dents of all Boeing commercial airplanes.

“The aerospace industry is facing increasing challenges due to manufacturers’ accelerated innovation, stricter regulatory standards, heightened concerns for passenger safety, mounting costs of grounded aircraft, and profitability targets,” explained Jérôme-Alexandre Lavoie, Product Manager at Creaform. “Because the HandySCAN AEROPACK package was developed with these challenges in mind, aircraft and MRO companies can tackle them head on with our solution suite.”

 

Check these articles out:

Creaform Expands European Coverage of CUBE-R

Creaform Moves Offices In Singapore

Creaform Adds Academia 50 3D Scanner To Its Educational Solution Suite

Creaform 3D Scanner Meets Boeing’s Quality Requirements

Creaform Names New Vice President Of Operations

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Airbus Opens Automated A320 Assembly Line

Airbus Opens Automated A320 Assembly Line

Airbus has inaugurated its highly automated fuselage structure assembly line for A320 Family aircraft in Hamburg, showcasing an evolution in Airbus’ industrial production system.

With a special focus on manufacturing longer sections for the A321LR, the new facility features 20 robots, a new logistics concept, automated positioning by laser measurement as well as a digital data acquisition system. These will further support Airbus’ drive to improve both quality and efficiency while bringing an enhanced level of digitalisation to its industrial production system.

“By embracing some of the latest technologies and processes, Airbus has begun its journey to set new standards in A320 Family production. This new fuselage structure assembly line is an essential enabler for the A320 Family ramp-up. Increasing the level of automation and robotics enables faster, more efficient manufacturing while keeping our prime focus on quality,” said Michael Schoellhorn, Airbus Chief Operating Officer.

For the initial section assembly, Airbus is using a modular, lightweight automated system, called “Flextrack”, with eight robots drilling and counter-sinking 1,100 to 2,400 holes per longitudinal joint. In the next production step, 12 robots, each operating on seven axes, combine the centre and aft fuselage sections with the tail to form one major component, drilling, counter-sinking, sealing and inserting 3,000 rivets per orbital joint.

Besides the use of robots, Airbus is also implementing new methods and technologies in material and parts logistics to optimise production, improve ergonomics and shorten lead times. This includes the separation of logistics and production levels, demand-oriented material replenishment as well as the use of autonomous guided vehicles.

The Hamburg structure assembly facility is responsible for joining single fuselage shells into sections, as well as final assembly of single sections to aircraft fuselages. Aircraft parts are equipped with electrical and mechanical systems before eventually being delivered to the final assembly lines in France, Germany, China and the U.S.

 

Check out these articles:

Big Presence For Taiwan At EMO 2019

EMO Hannover 2019 Boosting Investment Levels With Array Of New Technologies

3D Systems And GF Machining Solutions Expand Partnership

SCHUNK Launches Powerful 24V Grippers For Small Components

Industrial Robots: Robot Investment Reaches Record US$16.5 Billion

SCHUNK Releases Versatile Clamping Module For Automated Machine Loading

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Paris Air Show: TRUMPF Showcases How 3D Printing Improves Satellites And Aircraft

Paris Air Show: TRUMPF Showcases How 3D Printing Improves Satellites And Aircraft

At the Paris Air Show this week, TRUMPF is demonstrating how additive manufacturing (AM) can improve satellites and aircraft.

Satellites are subject to a whole array of ever more stringent requirements. On the one hand, they need to be as light as possible, because every kilogramme that a launch vehicle carries into space costs the client several hundred thousand euros. At the same time, however, satellites must be robust enough to withstand the tremendous forces experienced during launch.

Weight reduction is equally important for aircraft because it leads to a significant drop in fuel consumption. This reduces both their environmental impact and costs.

Additive technologies are the perfect match for the aerospace industry because they enable engineers to create parts that are both lightweight and robust. These methods only add material where it is actually needed, while conventional methods such as milling and casting often struggle to eliminate superfluous material. 3D printers are also adept at handling light metals such as aluminium and titanium, and AM engineers enjoy much more freedom in the design process because they are not confined by the limitations of traditional production methods.

TRUMPF offers expertise in both the key methods required by the aerospace industry: laser metal fusion (LMF), which is carried out entirely within the confines of the 3D printer, with a laser building up the part layer by layer from a powder bed; and laser metal deposition (LMD), which uses a laser beam to build up layers on the surface of a part, with the metal powder being injected through a nozzle.

Three Examples of How 3D Printing is Improving the Aerospace Industry:

  1. Weight of satellite mounting structure reduced by 55 percent

TRUMPF has been commissioned by the space company Tesat-Spaceroom GmbH& Co. KG to produce a 3D-printed mounting structure for Germany’s Heinrich Hertz communications satellite, which will be used to test the space-worthiness of new communication technologies. The mounting structure includes strap-on motors that are used to modulate microwave filters.

In collaboration with the company AMendate, engineers succeeded in optimising the topology of the mounting structure and reducing its weight by 55 percent. The mount now weighs just 75 grams instead of 164 grams.

The team of experts printed the redesigned part on TRUMPF’s TruPrint 3000 3D printer. The new geometry cannot be produced using conventional methods. Apart from being lighter, the optimised mounting structure is also more robust. During the launch of the satellite, the new mounting structure will withstand the same high forces and will hold its shape better. The Heinrich Hertz satellite mission is carried out by DLR Space Administration on behalf of the Federal Ministry of Economics and Energy and with the participation of the Federal Ministry of Defence.

  1. Cost of engine parts reduced by 74 percent

TRUMPF is also showcasing an AM use case for the aviation sector at the Paris Air Show. In collaboration with Spanish supplier Ramem, TRUMPF experts have employed 3D printing to optimise a part known as a ‘rake.’ Manufacturers use this part during engine development to measure the pressure and temperature of the engine. These kinds of measurements are an important part of testing aircraft performance. Mounted directly in the engine’s air flow, rakes are exposed to extreme temperatures and high pressure. To deliver accurate measurements, they must conform to precise dimensional requirements. Producing rakes by conventional means is an expensive and time-consuming process.

Workers produce the base structure on a milling machine before inserting six delicate tubes, welding them into place and sealing the body of the rake with a cover plate. If just one of these tubes is out of place, the rake has to be scrapped. TRUMPF produced an optimised rake geometry on the TruPrint 1000 3D printer. Redesigning the part in this way makes it quicker for the manufacturer to produce and reduces the amount of material used by around 80 percent, ultimately slashing the overall cost by 74 percent.

  1. Making engine blades easier to repair

TRUMPF is also presenting some sample applications of LMD technology at the Paris Air Show. These include the LMD repair of a high-pressure compressor blade—also known as a 3D aeroblade—used in aircraft engines. Apart from having to withstand extreme changes in temperature during flight, these components are also in constant contact with dust and water, and they typically show signs of wear on the edges and tips, requiring aviation engineers to periodically repair the blades to maintain engine efficiency.

The LMD method is perfect for this job, as in some sections of the blades, the material is just 0.2mm thick. Conventional methods quickly reach their limits in these kinds of applications. With LMD technology, however, the laser can be positioned with an accuracy of approximately one hundredth of a millimetre before it applies a precisely calculated dose of energy. At the same time, the system feeds in material of exactly the same composition as the part itself. This process makes it easy to repair the blades multiple times, significantly reducing the cost per part in each engine overhaul.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Thailand Receives Boost To Become Regional Hub For Aircraft MRO

Thailand Receives Boost To Become Regional Hub For Aircraft MRO

French investors in the aeronautical industry have expressed confidence in Thailand’s push to become a regional hub for aircraft maintenance, repair and overhaul (MRO). In June 2018, European aircraft manufacturer Airbus and Thai Airways International (THAI) have launched a new joint venture to establish a MRO facility at U-Tapao International Airport.

Airbus, which first entered the market in Thailand 40 years ago, believes that the MRO sector offer enormous potential for Thailand’s aerospace business in the coming years. The joint venture is part of Thailand government’s Eastern Economic Corridor (EEC) strategy under the country’s 4.0 policy to develop innovative technology-based manufacturing and services in the country. According to Sihasak Phuangketkeow, a former Thai ambassador to France, the MRO centre is a major step forward for Thailand in the new-growth S-curve industries and its grand Thailand 4.0 strategy.

The MRO facility will be the most extensive in the Asia Pacific region, supported by Thailand’s strong automobile and electronics manufacturing base. Airbus and THAI are still working on the final details of the deal to address MRO requirements. When fully operational, the MRO centre will offer heavy maintenance and line services for all widebody aircraft types. The facility will also feature the latest digital technology to analyse aircraft maintenance data, specialised repair shops for composite structures and a maintenance training centre offering courses for technical personnel from Thailand and overseas. With airlines expanding their fleets, including fast growing budget airlines such as AirAsia, many aircrafts would require maintenance and overhaul in the next few years.

Cedric Post, the French Aerospace Industry Association’s deputy director for European and international affairs said that MRO will be a key piece of the aeronautics industry in ASEAN. Furthermore, Airbus and Thailand’s Civil Aviation Training Centre (CATC) have signed a Memorandum of Understanding (MoU) in January to work on projects to develop and implement maintenance training and pilot training courses in the country. This would support the development of the country’s aviation industry by helping to ensure a steady supply of pilots, engineers and mechanics for Thailand’s airlines and MRO centres.

Airbus has already begun working with CATC on basic maintenance training courses which could be expanded to additional maintenance and flight training courses for pilots. “The main challenge is to face the growth and train all required technicians and engineers. Airbus is confident that CATC, with Airbus assistance and cooperation, is able to address this challenge,” said Joost van der Heijden, Airbus head of marketing for Asia and North America.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Vietjet To Finance Fleet Expansion With Foreign Investment

Vietjet To Finance Fleet Expansion With Foreign Investment

Vietnamese budget carrier, Vietjet, has signed two agreements worth a total of US$1.2 billion with Mitsubishi UFJ Lease & Finance Company Limited (MUL) and BNP Paribas in order to fund its fleet expansion plans which includes the acquisition of up to five brand new aircrafts, costing a total of US$614 million.

The signing ceremony was witnessed by the Vietnam Prime Minister Nguyen Xuan Phuc and also included the signing of a memorandum of understanding worth US$625 million between Vietjet and Natixis, a French banking group, as well as several Japanese equity underwriters.

These deals have been made under a financial plan whereby Vietjet would claim future ownership of the aircrafts and the acquisition of the new aircrafts, which includes the A321neo aircraft, are also acknowledged as part of a contract signed earlier between Vietjet and Airbus.

Currently, Vietjet operates 60, A320, A321 aircrafts and operates more than 385 flights daily, carrying more than 65 million passengers across 101 routes to destinations such as Vietnam, Japan, Hong Kong, Singapore, South Korea, Taiwan, China, Thailand, Myanmar, Malaysia and Cambodia.

Moving forward, Vietjet has announced plans to develop three new routes linking Vietnam with Japan in the coming three months which would facilitate the growth of tourism and trade between the two countries and across the region. The new routes include Osaka-Hanoi, Osaka-Ho Chi Minh City and Tokyo-Hanoi.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

Back To Top