skip to Main Content
Sustainable Manufacturing Thanks To Fiber Lasers And Automation

Sustainable Manufacturing Thanks To Fiber Lasers And Automation

A fiber laser cutting system, a matching automation solution, and innovative software enable companies to increase their productivity while simultaneously saving energy. The Haslach Group, based in the Allgäu region in Germany, shows how this can be done.

Twice the output for the cutting process with the same electricity consumption – fiber lasers are considerably more efficient than CO2 lasers. This saves resources while simultaneously increasing output. And this is why the transition was an obvious step for the Haslach Group: “We want to be able to fulfil our customers’ increasing demand and we have found a reliable partner with Bystronic,” says Managing Director Marita Haslach-Dann.

In order to meet the growing demand while simultaneously saving resources, two ByStar Fiber 4020 fiber laser cutting systems have been in operation in the Haslach Group’s production halls since December 2018. Each equipped with a laser output of six kilowatts, they can cut metal sheets up to a size of four by two meters – ideal for Haslach, a medium-sized company well-known for its ability to process large-format metal sheets.

Wide Range Of Applications

On the outside, the ByStar Fiber 4020 stands out thanks to its attractive design. On the inside, there is patented laser technology: a cutting head developed by Bystronic that precisely adapts the focal point of the laser beam to match the sheet thickness and material. This enables the fiber laser cutting system to consistently achieve the optimal processing quality in spite of varying sheet metal thicknesses and materials.

The ByStar Fiber 4020 cuts up to 30 millimeter thick steel and guarantees clean cutting edges in a wide range of sheet metal qualities. This makes it possible to cut intricate contours in the best possible quality. Complex geometries can also be implemented with ease. Moreover, the range of applications is broader in comparison to CO2 laser cutting machines: The new systems can handle a wide variety of sheet thicknesses and an extensive range of materials, including non-ferrous metals, such as brass and copper. The Haslach Group benefits from this added flexibility, because many of its customers have very specific requirements.

Customised Automation Solution

In order to ensure the rapid loading and unloading of the fast machines, the Haslach Group uses a matching automation solution on both of its fiber laser cutting systems: the ByTrans Cross 4020. “An ideal match,” Marita Haslach-Dann explains. “The automation helps us to work more ergonomically and to increase our throughput. This enables us to produce efficiently.” In spite of the fully automated material supply, operators can manually feed in sheets whenever required.

The inflow and outflow of materials is connected to a high-bay warehouse. The Haslach Group had specified an automated warehouse system, but only one supplier was able to meet their specific demands: “Bystronic rapidly implemented a customised solution for us,” Marita Haslach-Dann says. It was the overall package of cutting systems, automation, software, and service that convinced her.

Software Brings Transparency To Manufacturing

Cutting plans are created using the Bystronic BySoft 7 software, where programmers work in a 3D CAD environment. The 3D models provide a tangible idea of the parts that are to be produced. The BySoft 7 software automatically selects the best possible cutting technology and helps optimise cutting processes. It also ensures optimal use of the raw sheets based on the highly sophisticated nesting of parts.

Thanks to the touch screen, operators always maintain an overview: Production and machine data are retrieved in real time. Operation is so user-friendly that one employee can supervise several machines at the same time. “With the previous systems, we had one operator for every machine,” says Marita Haslach-Dann. The staff have been assigned to new tasks because the high cutting speed of the ByStar Fiber 4020 results in the output of more cut parts that require sorting.

In order to ensure all employees have an overview of the production process, the Haslach Group also relies on planning software from Bystronic, the Plant Manager. The programmer is enthusiastic: “We can always see at what capacity the machines are running,” he explains. “This allows us to flexibly coordinate individual steps of the workflow to accommodate short-term change requests.” Virtually real-time access to all the relevant production and machine data makes it possible to adapt production processes to be able to accept last-minute customer orders.

Doubled Productivity

Programming and planning software has transformed production into a digitally networked manufacturing landscape. Employees can constantly monitor the flow of information and quickly implement plans. “Our path from the incoming order to the end product has become faster and more efficient,” Marita Haslach-Dann explains. The Haslach Group’s head of the cutting department confirms this: “We have successfully increased productivity by 50 to 60 percent when processing thin sheet metal.” The results are impressive: The perfect cutting edges satisfy even the most demanding customers.

CHECK OUT THESE OTHER ARTICLES

Global Sheet Metal Fabrication Services Market To Register 3% CAGR From 2019-2023

Round Tool Concepts: Indexable, Solid or Both

Sandvik Coromant’s CoroBore 825 Damped Fine-Boring Tool Improves Security And Productivity

EMO 2019: ANCA To Launch Latest Generation Of ToolRoom Software

Tungaloy’s Latest TetraForce-Cut Chipbreaker Provides Efficiency in Difficult Grooving

OMAX Presents Waterjet Cutting Technology at EMO 2019

Significantly Better Surface Finishes Thanks To Vibration Damping

ISCAR Launches Chipformer For Finish Turning On Superalloys

Sandvik Coromant To Showcase Digital Solutions For Machining Processes At EMO 2019

Laser Cutting Technology: Why Choose It?

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Not A Small Challenge: Cutting Tools For Miniature Dental And Medical Parts

Not A Small Challenge: Cutting Tools for Miniature Dental and Medical Parts

Successful development of innovative and dynamic parts in today’s miniature dental and medical components industry presents a formidable and equally dynamic challenge to cutting tool manufacturers. Article by ISCAR.

Successful development of innovative and dynamic parts in today’s miniature dental and medical components industry presents a formidable and equally dynamic challenge to cutting tool manufacturers.

The fast-growing field is driven by enterprising orthopaedic surgeons and dental professionals together with medical screw and implant companies, who work in close cooperation with  computer aided design and manufacturing (CAD/CAM) software developers and dedicated machine and tool manufacturers to transform their inventions into parts that are revolutionizing medical and dental procedures. Each new component demands correspondingly advanced tools and geometries to create the new and complex shapes, and to ensure extreme precision and consistently excellent surfaces.

The materials used for producing medical screws and implants are titanium superalloys, although stainless steel hard materials are used when a special ratio of depth of cut to chip thickness is required. These materials are gummy and cause built-up edge (BUE), which tends to wear down edge sharpness, while the high temperatures generated during chip breaking shorten tool life and damage surface quality.

ISCAR, a manufacturer of cutting tools for metalworking, invested time and resources to develop optimal machining solutions for the medical sector, applying unique geometries, tools, and grades. Utilizing CAD/CAM systems to create custom tool assemblies according to the ISO 13399 standard, ISCAR developed cutting tools for machining miniature medical parts—specifically dental screws and four components for hip joint replacement implants: femoral head, acetabular shell, femoral stem, and bone plate.

Dental Screws

ISCAR provides dedicated cutting tools for each of the main operations involved in machining dental screws. The company developed two options for rough OD (outer dimension) turning. The SwissCut compact tool is designed for Swiss-type automatics and CNC lathes, and enables reduced setup time and easy indexing without having to remove the toolholder from the machine, while the inserts are equipped with chip deflectors designed specifically for machining small parts. The second option features SwissTurn toolholders, with a unique clamping mechanism to optimize insert clamping and replacement on Swiss-type machines, and JETCUT high pressure coolant tools. SwissCut tools are used for the turn threading operation.

CHATTERFREE endmills are utilized for the slot milling stage to maximize stock removal rate, eliminate vibration and reduce cycle time. The unique ground geometry provides excellent surface and tool life, while machining at high material removal rates.

PENTACUT parting and grooving inserts perform the cut-off operations. With five cutting edges and very rigid insert clamping, PENTACUT is a stronger insert for higher machining parameters particularly on soft materials, parting of tubes, small and thin-walled parts.

SwissCut tools are used in the face and OD turning (screw head turning) operation, while the drilling operation is performed by SOLIDDRILL solid carbide drills with 3xD and 5xD drilling depths and right-hand cut. The drills feature coolant holes.

The thread milling operation features SOLIDTHREAD thread mills, whose short three-tooth cutting zone with three flutes and released neck between the cutting zone and the shank enable precise profiles and high performance. The extremely short profile exerts a low force which minimizes tool bending, facilitating parallel and high thread precision for the entire length. The solid carbide SolidMill endmills perform the key head milling operation.

Hip Joint Replacement

Complex operations are involved in machining components for hip joint replacement, which demand high accuracy, pristine surface quality, and absolute reliability. ISCAR provides products for each operation to maximize their precision and efficiency.

Femoral Head

The machining required for a femoral head involves rough turning or rough grooving, semi-finish profile turning, rough drilling, semi-finish milling, semi-finish internal turning, internal grooving (undercut), cut-off, rough turning, and semi-finish turning.

The ISOTURN turning tools may be used for rough turning. The ISO standard tools perform most of the industry’s chip removal in applications ranging from finishing to roughing. Offered in all standard geometries, the trigon (semi-triangular) turning inserts for axial and face turning features six 80° corner cutting edges. For profile machining, ISCAR provides intricate and precise V-LOCK V-shaped special profile grooving inserts for the range of 10–36mm.

SUMOCHAM drilling tools perform the rough drilling operation, offering fast metal removal and economical indexing with no setup time. SUMOCHAM integrates a clamping system that enables improved productivity output rates and a shank designed with twisted nozzles, and a durable and stable body.

The CHATTERFREE 4-flute endmills are utilized for the semi-finish milling operation. CHAMGROOVE internal grooving inserts are applied for semi-finish grooving. The inserts possess extremely small bore diameters starting at just 8mm and incorporate internal coolant.

Semi-finish internal turning is performed by ISOTURN inserts with SWISSTURN toolholders, while the cut-off operation uses DO-GRIP twisted double-sided parting inserts which feature double-ended twisted geometry for no depth of cut limitation.

For rough turning, the SWISSTURN ISO standard insert range with small shank sizes is used. Also available for this operation are standard geometry inserts with precision ground cutting-edges and small radii for manufacturing small and thin parts. The semi-finish turning operation is performed by using CUT-GRIP inserts.

Acetabular Shell

Machining of the acetabular shell component consists of rough internal turning, finish profile milling, shouldering, upper and bottom chamfering, drilling, thread milling, external rough turning, and external grooving operations.

HELI-GRIP double-ended inserts are used for the rough internal turning operation, as the twisted design allows them to groove deeper than the insert length. Internal finish milling is performed by SolidMill 3-flute, 30 deg helix short solid carbide ball nose endmills. SolidMill endmills with 4 flutes, 38° helix perform the finish shouldering operations, as well as the special-shaped endmill which performs the upper and bottom chamfering operations that follow the drilling stage. The SOLIDDRILL solid carbide drills are used for the drilling operation.

Thread milling is performed by SolidMill solid carbide internal threading endmills, which integrate coolant holes for ISO thread profiles. ISO standard inserts with SwissTurn toolholders are used for rough turning, and external grooving is performed with CUT-GRIP precision inserts.

SolidMill endmills with four flutes, 38° helix and SolidMill three flute, 30° helix short solid carbide ball nose endmills perform the final milling operations.

Femoral Stem

Machining the femoral stem involves slotting, spot milling, drilling, chamfer milling, turning, face and profile milling operations.

MULTI-MASTER endmills with indexable solid carbide heads in the diameter range of 12.7–25mm are used for the slotting operation. Spot milling is performed by means of SolidMill endmills with four flutes, 38° helix and variable pitch for chatter dampening with 3xD relieved necks. The drilling operation uses SOLIDDRILL solid carbide drills, while chamfer milling is performed using MULTI-MASTER endmills with indexable solid carbide heads. ISO standard geometry inserts with precision ground cutting edges are used with SWISSTURN toolholders for the turning operation.

SolidMill three-flute, 30 deg helix short solid carbide ball nose endmills are employed for the profile milling operation, and SolidMill endmills with four flutes, 38 deg helix and variable pitch for chatter dampening with 3xD relieved necks are utilized for face milling.

Bone Plate

The machining required to manufacture a bone plate involves rough and finish milling, shouldering, drilling, and mill threading. For rough milling, the FINISHRED endmill geometries allow the tool to perform roughing and finishing operations at the same time. The result is the ability to apply roughing machining conditions, while obtaining excellent surface finish. MULTI-MASTER interchangeable solid carbide tapered heads are applied to the finish milling operation, whereby the curved surfaces can be machined by tilting the tool and applying a large corner radius at small cutting depths. Shouldering is performed with CHATTERFREE endmills, which enable high material removal rates, eliminate vibration, and reduce cycle time.

For the final milling stage, MULTI-MASTER four flute, 30 deg helix short solid carbide ball nose endmills in the 5–25mm range are employed, while SOLIDDRILL solid carbide drills are used to ensure stable and accurate drilling. SOLIDTHREAD 55 deg or 60 deg profile solid carbide taper thread mills are used for the mill threading operation.

Grades

Grades specifically designed for machining applications on stainless steel and super alloys such as IC900, IC907, IC806, IC908, IC328, and IC928 are ideal for milling and turning titanium and nickel-based alloys, such as Nitinol, commonly found in medical components. These grades are available for ISCAR standard tools with specially designed positive and sharp edged chipformers.

It is no small challenge to manufacture miniature parts for dental and medical devices but ISCAR has succeeded in developing highly effective cutting tools for this field that adhere to the stringent standards of quality and precision essential for medical industry applications.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Choosing The Best Machining Centre For Your Application

Choosing the Best Machining Centre for Your Application

In an interview with Asia Pacific Metalworking Equipment News (APMEN), Michael Cope, product technical specialist at Hurco Companies Inc. talks about HMCs and VMCs, and which machining centre to use for your specific applications. Article by Stephen Las Marias.

Hurco Companies Inc. manufactures computer numeric control (CNC) machine tools for the metal cutting and metal forming industry. Two of the company’s brands of machine tools, Hurco and Milltronics, are equipped with interactive controls that include software that is proprietary to each respective brand. Hurco designs these controls and develops the software. The third brand of CNC machine tools, Takumi, is equipped with third-party industrial controls, allowing customers to decide the type of control they need.

Hurco’s products are used by independent job shops, short-run manufacturing operations within large corporations, and manufacturers with production-oriented operations. Its customers are manufacturers of precision parts, tools, dies, and moulds for industries such as aerospace, defence, medical equipment, energy, transportation, and computer equipment. Based in Indiana, USA, Hurco has manufacturing operations in Taiwan, Italy, the US, and China. It also has sales, application engineering support, and service subsidiaries in England, France, India, Singapore, and Taiwan, to name a few.

In an interview with Asia Pacific Metalworking Equipment News (APMEN), Michael Cope, product technical specialist at Hurco, speaks about the latest technology developments in machining centres, in particular, horizontal machining centres (HMCs) and vertical machining centres (VMCs), and discusses whether one is better than the other. He also explains their applications, the latest customer requirements, and how machine manufacturers are keeping up to meet those demands.

 

Figure 1: Powered by its proprietary WinMax software, Hurco’s CNC control is the key to making job shops more profitable because it is designed to make small-batch/high-mix production efficient by reducing setup time and programming time.

Q: What is your company’s ‘sweet spot’?

Michael Cope: Hurco’s ‘sweet spot’ lies in our proprietary CNC controller. Powered by WinMax software, our CNC control is the key to making job shops more profitable because it is designed to make small-batch/high-mix production efficient by reducing setup time and programming time. In fact, 65 percent of our customers answered in a recent survey that ‘The Control’ is what they most like about Hurco.

 

Q: What are the biggest process challenges that your customers are facing and how are you helping them address such issues?

MC: Customers are getting jobs with increasing complexity in terms of geometries and number of set-ups, but at the same time lack the machinist and programmers with the necessary knowledge and experience to execute these jobs. We help them assess their new jobs and discuss practical ways to machine their parts. It may involve a new investment with addition capabilities such as 5-axis or HMC, or simply adding a rotary (fourth axis) or trunnion table (fourth and fifth axis) to their existing Hurco machines. There are also cases where the customer utilizes our showroom demo machine to run their first article with the assistance of our applications engineer.

 

Q: What opportunities do you see for your company in the coming years in Asia?

MC: The recent trade disputes between the US and China, and the impending review of the cross-border tariffs in various jurisdictions have affected overall market sentiments. Global manufacturers will re-evaluate their supply chain and would likely change their investment strategies, that is, new plants and sourcing territories. We see imminent growth potential in the ASEAN region as global manufacturers realign their strategies. We will continue our investment in Southeast Asia with our partners/distributors so that our technology will help bridge the knowledge gap faced by end users in these emerging economies.

 

Q: How would you differentiate HMC from VMC, and what are their advantages and disadvantages?

MC: HMCs typically cost more than a standard VMC, but can provide lots of benefits to the customer: better chip and coolant control, almost always are equipped with a fourth axis rotary table, and can allow the operator to utilize multi-sided tombstone type fixturing that will facilitate a larger number of parts in a single setup. HMCs are also usually equipped with a pallet changer, which allows the operator to be loading parts while the machine is running—therefore reducing the down time necessary between cycles.

VMCs are the more traditional type of machine configuration and are found in almost every shop. For everyday job-shops, where they are running small to medium lot sizes, the required amount of machine setups necessary in a single week (or even in a single day) might make a HMC less attractive. Although they are very good at machining lots of parts—even multi-sided work—HMCs typically are not as quick and easy to setup as a VMC, and therefore might not be the best choice for a shop with a high mix of low-volume work.

In high production scenarios, a HMC can really shine. Again, the ability to fixture a larger number of parts in one setup on a multi-sided tombstone fixture, and the ability to reach at least three sides of each part, can help tremendously when running a production run with large volumes. Also, when running large volumes, with lots of cutting, a large amount of chips will be produced. The HMC is designed to assist with the efficient removal of these chips.

 

Q: What are the latest technology developments in HMCs and VMCs?

MC: One area of technology that comes to mind is speed and motion control. Modern machines are getting faster—both in programmable feedrates, as well as rapid traverse feedrates—and the motion control systems are getting faster, too. This increased speed not only allows shops to get work done faster, but they are also producing better parts. Surface finishes, part accuracies, and overall machine longevity are all things that are benefiting from these technology advancements, and are helping shops become more productive and more efficient.

 

Figure 2: The VCX600i cantilever 5-axis machine is equipped with CTS and linear scales, a 12k spindle, and B-axis travel of +40/-110 deg.

Q: Tell us more about your latest machining centres.

MC: We have launched our second-generation Performance cantilever style 5-axis machining centre, the VCX600i, designed for high speed cutting. The VCX600i features a motorized spindle with spindle speed up to 18,000rpm, a torque table with absolute rotary encoders, and several tool change options. Coupled with our new 3D Solid Model Import software, programming of a multi-sided part can be easily completed via Hurco conversational programming with literally just a few clicks.

We have also delivered our first two HM1700Ri HMCs in Asia to the oil and gas industry. The HM1700Ri features BT50 Motorized Spindle and an 800mm diameter rotary torque table that is embedded within a 1,650x840mm worktable. This unique table set-up provides the end user the flexibility to work on parts larger than the rotary table using its X, Y, Z travels.

 

Q: What advice would you give your customers when it comes to their machining processes and choosing their machining solutions?

MC: If a customer has a machine that is performing well in their shop, then they should use that machine as long as it keeps making them money—especially if it is paid for! However, we see too any shops that fall into the trap of buying used equipment when they need to add a machine to their shop. They think they are saving money by spending less on the purchase, but truthfully—with all the advancements in today’s controls and machine technology as a whole—they are probably losing money. The time it will take to see a return on that additional investment will be short, and the benefit they will reap from the new technology will be quick and the impact will be substantial over time.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Tungaloy’s -01 Geometry For High Precision Finish Turning On Swiss Lathes

Tungaloy’s -01 Geometry For High Precision Finish Turning On Swiss Lathes

Tungaloy enhances its ISO positive turning inserts in “-01” geometry to include a 0.4 mm (.0157″) nose radius prepared in a minus tolerance specifically for precision finishing in Swiss turning applications.

The new -01 geometry is designed to deliver consistent chip control at extremely light cutting depths of 0.5 mm (.020″) or smaller. The introduction of a 0.4 mm nose radius insert is implemented due to the increased demands in the Swiss turning market where workpieces with 0.4 mm corner radius requirements are as popular as workpieces with 0.2 mm radii. In addition, these corner radii are often required to be finished equal to or smaller than the required radius dimensions in order to minimise the impact on dimensional accuracy. Therefore, the insert nose radii of the -01 geometry are all designed and constructed in a minus tolerance to the nominal nose radii, and not exceeding it.

Combined with the existing -JS geometry, the first-choice for small part turning, the enhanced lineup of the -01 geometry provides customers with optimal chipbreaker options for various cutting depths and feed rates in Swiss turning operations.

The -01 geometry is optimised for cutting depths of 0.5 mm (.020″) or less, while -JS geometries are effective for depths of cut ranging from 0.5 mm to 3.0 mm (.020″ to .118″).

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Increasing Automation, Connectivity And Energy Efficiency In Metal Cutting

Increasing Automation, Connectivity And Energy Efficiency In Metal Cutting

Asia Pacific Metalworking Equipment News is pleased to conduct an interview with Armin Stolzer, Owner & CEO of KASTO Maschinenbau GmbH & Co. KG regarding current trends in the metal cutting industry.

APMEN: What trends are shaping the metal cutting industry?

The current favourable situation in widespread parts of the global economy and in the metalworking sector is leading to many companies increasing their production output. However, for the most part, additional capacity is usually necessary to enable the larger number of orders to be processed on time. More and more users are therefore deciding to automate processes, including in the sawing and storage technology sector. This offers considerable potential and, at the same time, the necessary flexibility to be able to respond to changing requirements.

 

APMEN: How are you helping your customers keep up with these trends?

We help companies to achieve significant improvements in production efficiency while at the same time reducing their costs – two outcomes which in today’s economically challenging climate are in especially great demand. Our sawing machines and storage systems can be easily integrated into a digitalised and automated material flow. We also offer combined sawing and storage systems in which all the storage, handling, sawing, marking, palletising and bundling processes are performed fully automatically with the help of industrial robots – from putting the raw material into store through to the picking of the cut parts. With our customised complete systems, metal-processing companies can fully utilise the potential of their production and logistics facilities.

At the software level we also have innovative solutions that are perfectly adapted to industry needs, for example in the form of our well-designed machine control systems and KASTOlogic Warehouse Management System. With KASTOoptisaw, we have developed a cutting optimisation tool which considers various machine parameters as well as the workload. It generates one or more cutting plans that determine the best item sequences. This results in less waste and as few material movements as possible, saving users both time and money.

 

APMEN: What are the latest technology developments in KASTO’s metal cutting saws and storage systems?

Just recently, we have launched an innovative solution for maintaining our machines and systems remotely: KASTO VisualAssistance. By means of a tablet, smartphone or smart glasses, users can send live videos to KASTO’s service experts and receive visual assistance and information in real time in the event of a fault or maintenance work. Downtimes can be reduced to a minimum, which has a positive effect on the cost balance.

For our automatic bar stock and sheet metal storage systems, we have developed a concept in which excess kinetic energy can be converted into electric current, stored temporarily and then be used flexibly as required. Consumption of electric power can be reduced by as much as 40 percent compared to conventional drive systems and the connected load can even be cut by more than 50 percent. This reduces operating and investment costs and cuts CO2 emissions.

Also, we have comprehensively re-engineered our KASTOtec automatic bandsaws. In doing so, we have clearly focused on the optimum use of carbide metal saw blades. Further innovations relate to the saw feed, the main drive, and a system for automatically adjusting the feed speed. This all contributes to a further increase in sawing performance.

 

APMEN: What sets your solutions apart from competition in the region?

KASTO is the market leader for metal sawing machines, semi-automatic and fully automatic storage systems, as well as automated handling equipment for metal bar stock, sheet metals and parts cut to size. Our portfolio includes high-performance sawing machines that not only enable the user to achieve a supreme cutting quality but also the best cost per cut. Our products feature a high degree of automation and therefore offer the best prerequisites for the megatrends Industry 4.0 and Internet of Things. Besides, we are the only supplier of combined sawing and storage systems and have extensive software know-how. Customers therefore benefit from the full range of equipment for the provisioning, production and distribution of material from a single supplier.

Our products and solutions stand out due to their high level of innovation and ideally fit the requirements of our customers. Top-quality workmanship causes the saws and the storage systems to be particularly rugged and durable. Being a family-owned and -managed company, KASTO stands for quality “Made in Germany”. At the same time, we offer comprehensive and personal service, short response times and expert local advice to all our customers everywhere in the world. In 2015, we opened a subsidiary in Singapore to strengthen our position in the Southeast Asian Market.

 

APMEN: How do you see the metal cutting industry developing in the next year or two?

Connectivity and automation are increasing. Machines, goods, raw materials, load carriers, transport equipment and locations are no longer isolated; they are globally linked and interconnected by means of information networks. Production and logistics are merging, and the integration of processes is increasing. Handling tasks are becoming more and more automated. Digital technology controls the value chain from the producer of raw materials to the final customer. Other important trends include a greater emphasis on safety in materials handling and machine control, which is why we focus in particular on developing effective solutions.

Also, the question of energy efficiency is becoming ever more important. Ultimately, the increased levels of automation mean that users are also taking account of power consumption as a decisive cost factor. The demands placed on machines and systems are therefore not only growing in terms of flexibility, speed and precision, but also at the level of the savings they can bring. To meet these needs, KASTO’s portfolio includes efficient energy recovery and storage methods that allow users to reduce the electricity costs resulting from system operation and, at the same time, to improve the quality of the power supply.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

KASTO: From A One-Man Company To A Global Player

KASTO: From A One-Man Company To A Global Player

In its 175-year history, sawing and storage technology provider KASTO has developed into an internationally successful company. Around the globe, a close-knit network of branches and agencies ensures that the company is always close to the markets and its customers and can offer fast and individual service.

As early as the 1970s, KASTO was one of the most innovative suppliers of metal sawing and storage technology for the industry. Its solutions are in demand—not only on the home market, but also beyond the national borders. KASTO emphasises on internationalisation in order to provide a high standard of service to its customers and markets outside of Germany. This was a pivotal step to ensure the future success of the manufacturer.

The first step abroad led to France

In 1977, KASTO founded its first branch in neighbouring France. The company’s current main site in Obernai, Alsace, is only a few kilometres away from the German headquarters (Achern in Baden-Wuertemberg)—this makes the general organisation easier and ensures short distances. Target industries included steel trading, window construction, and the aviation industry. The branch quickly became a success—and today, KASTO France has 30 employees, who serve around 4,000 customers in France, Belgium, Luxembourg and North Africa, achieving a considerable proportion of KASTO’s steadily increasing foreign turnover.

A short time later, KASTO crossed the pond and opened another branch in Pittsburgh, USA. The fluctuating economic development in the USA resulted in this site experiencing both highs and lows—and the ‘Steel Belt’, the region around the city with its then booming steel industry, became a ‘Rust Belt’ in times of crisis. Since the end of the 2000s, however, Pittsburgh has been on the rise again, with numerous technology companies settling in and around the city. KASTO Inc., with around 40 employees and an extensive spare parts warehouse, is also the contact for KASTO users in Canada. In 2018, the company inaugurated a new showroom with a Technology Centre in Chicago. Amongst other things, customers can see machines and digital solutions in advance there and carry out test cuts.

Time for the island!

At the beginning of the 1990s, many companies invested in the new German federal states due to strong demand. For its part, KASTO established a plant in Schalkau, Thuringia. In 2003, the company also positioned itself on the British market with its own subsidiary on the island. Today, KASTO UK’s 13 employees provide support for customers in the United Kingdom, Ireland, Denmark, Finland and the Middle East.

When KASTO took its first steps on to the Asian continent in 2015, the company realised that protectionism, legal restrictions and administrative hurdles were amongst the greatest challenges on its route to becoming a global player. Starting a company in a country like China is a very lengthy process. From legal forms to the search for personnel, and from insurance to local legislation, there are so many aspects that are completely different than those in Germany. Nevertheless, KASTO succeeded in establishing itself in Asia, opening a branch in Singapore in 2015, and another in Taicang, China in 2018. Customers benefited from a much faster and more flexible service—and from employees who were familiar with the respective countries and cultures and who spoke the local language.

Globally successful cooperation

The year 2016 saw KASTO establishing a branch in Rheinfelden, Switzerland. Although it is not far from its Achern HQ, it is still very advantageous to have a presence in the country because it facilitates faster customer service and the speedier supply of spare parts. Swiss customers are also pleased to hear the KASTO service staff speak in Swiss German, which is the national language. At this point, KASTO now has its own subsidiaries in six countries. However, no more will be added in the foreseeable future. This is also due to the excellent cooperation with numerous independent KASTO agencies in many countries of the world—from Norway to South Africa and from Brazil to New Zealand. The oldest of these is located in Japan and has existed since 1965. The company regularly invites all its representatives to training courses at its headquarters.

Over the years, much courage and commitment have paved the way for KASTO to become a global player. At present, saws and storage systems from Achern can be found in every corner of the world: on La Réunion in the Indian Ocean, for example, or on the Caribbean islands of Martinique and Trinidad, on the Greek Cyclades, in Namibia, Oman and even New Caledonia in the Pacific. These KASTO products sometimes have to deal with extreme environmental conditions in Finnish Lapland, for example, in the mountains of Nepal or in the Sahara in Algeria—and this can make delivery, installation and of course operation challenging at times. However, the high quality and robust designs of the KASTO solutions ensure that they always carry out their tasks reliably, anywhere in the world.

For the future, the manufacturer has set itself the goal of continually strengthening its international locations and expanding the constantly increasing share of foreign sales. KASTO sees a lot of potential here—in regions like Asia and the USA, the demand for intelligent solutions for sawing and storage technology is high, since automation is not as advanced there as it is in much of Europe. A strong presence in these promising markets is the basic prerequisite for KASTO to support local users in the best possible way, and thus continue to set its course for worldwide success.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Adapting Cutting Tools To Changing Trends

Adapting Cutting Tools To Changing Trends

In an interview with Asia Pacific Metalworking Equipment News, Jacob Harpaz, ISCAR CEO, IMC President and Chairman of the Board, discusses the current trends in the metalworking tool industry, and how the company is helping their customers address their manufacturing challenges.

Jacob Harpaz

APMEN: Could you provide us with an overview of the trends that are shaping the metalworking tool industry?

Jacob Harpaz: Developments such as electric vehicles and powertrains in large volumes, additive manufacturing and cyber connectivity will mean significant changes in the style of machining and the materials being used. Workpieces will be produced more commonly at near net shapes for final machining and finishing.

By 2030 there will be big changes in the automotive sector. The major OEMs are moving away from the internal combustion engine which will mean much less metal removal will be required. There will be wider use of composite materials and the introduction of 3D printing will also mean less metal removal. At ISCAR we are preparing for these changes. Cutting tools will have to adapt to remove less metal but at much faster speeds and feeds.

Industry 4.0’s impact will not just come through sophisticated new technology such as sensors, process monitoring and acquiring machining data, but in the integration of factories and the supply and distribution of consumables used in manufacturing and products leaving the factory.

APMEN: How has ISCAR kept up with these trends?

Harpaz: ISCAR’s motto of “Machining Intelligently” represents the ongoing process of developing new products for increased productivity.  Our aim is to provide our customers with the latest technology to bring down costs.  ISCAR’s strategic philosophy is ongoing R&D that drives our business growth. As soon as we introduce to the market our newest tooling families, another team from the R&D division focuses on designing tools that will compete with these latest tools

ISCAR recently launched its “LOGIQ” cutting tools campaign featuring highly advanced cutting tool solutions for productive, high quality and efficient manufacturing in all sectors.

APMEN: What are the top three challenges that your customers are facing?

Harpaz: First, machining logically and intelligently is closely connected to today’s smart factories and the current cyber age. The cyber revolution is here, and Asian shops should quickly embrace what Industry 4.0 really means. They need to move beyond seeing Industry 4.0 as just a slogan, and this will take open-mindedness.

Next, companies need to maximise efficiency to stay ahead. They should be developing methods to collect, analyse and leverage data and utilising appropriate tools to cut faster or reduce setup, as well as implementing inventory systems that reinforce the aim of 24/7 machining. ISCAR’s “LOGIQ” product range helps to realise these goals.

Third, the ISO 13999 standard affects CAM procedures on production floors all over the world. Producing metal parts productively and profitably requires many technological changes to ensure that the process is followed correctly. To address this challenge, customers need online data such as the information that appears in ISCAR’s electronic catalog, which features assembly options.

APMEN: How are you helping them address these challenges?

Harpaz: ISCAR embraces a business culture that nurtures, strengthens and maintains strong ties with our customers. We aim to improve profitability and productivity for large and small manufacturers alike, facing every challenge as an opportunity to expand our range of solutions through focused R&D, production excellence, and close cooperation with customers to ensure the right product for their needs.

ISCAR introduced a milling tool assemblies option in E-CAT, its comprehensive electronic catalog. This new option represents a highly valuable instrument for the preliminary process in selecting tools at the design and planning stages of machining. Cutting tool data can be gathered accurately and used to create twin representations of the tools. Creating a digital twin representation of a tool assembly based on ISO 13399 facilitates the accurate communication of tool information between software systems. The assemblies are accessible in both 2D and 3D files, and the files can be downloaded directly from E-CAT on the ISCAR website.

Integrating this new function into the user’s CAM software can prevent errors on the shop floor during machining, while the ability to plan multiple tool assemblies saves time and costs in the planning process.

While we always provide the latest technology to machine the part, the productivity advantage of this technology only matters if you have the tool at the right place at the right time.

APMEN: How do you position ISCAR in the metalworking tools market in Asia?

Harpaz: The Asian market is important and presents its own challenges and opportunities; ISCAR welcomes every challenge as an opportunity for continued research and development of effective cutting solutions that match market developments and requirements.

Our commitment to combining innovation with reliability and cost consciousness, together with our wide market knowledge and penetration and a uniquely strong – and global – corporate culture, enables us to stay at the forefront of the industry and to provide our Asian customers with optimal, cost-effective solutions to their needs.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Walter’s HU5 Geometry Enhances Capabilities Of Cutting Machines

Walter’s HU5 Geometry Enhances Capabilities Of Cutting Machines

Walter AG has launched new single-sided indexable inserts with HU5 geometry for ISO M and S materials, helping users produce more components using the same number of machines.

The HU5 has a larger contact surface to the tool holder, increasing the stability and allowing for greater cutting depths, feeds and a larger metal removal rate—specifically, in the practical test, this comes to 18.36l/h instead of 10.71l/h. In addition to the stable fit, the decisive factor behind this is the combination of the geometry and Walter Tiger·tec Silver cutting tool materials, which allows for increases in tool life of up to 75 per cent. The geometry itself has been specially developed for heavy roughing of stainless steels and high-temperature alloys. It is typically used for applications in the oil and gas industry, for instance, in large valves made from AISI 316 material, or in the aerospace industry with Inconel 718 or titanium materials.

The main cutting edge, which is protected by a negative chamfer, prevents fractures when machining hard edge zones and optimises the performance for hard scale, for example, of forged parts. Components with interrupted cuts and other demanding machining operations are equally feasible.

The curved cutting edge and a deep chip breaker groove produce low cutting forces with high feed rates, consequently reducing the machining temperature. The variable rake angle in the area of the corner radius allows for soft chip reforming and increases the tool life. Available in standard CNMM, DNMM and SNMM, Walter rounds off its vast product range in the areas ISO S and M with the HU5 geometry. Walter now offers a total of 12 geometries in six grades as well as tools with precision cooling and ceramic or CBN inserts.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Global Metal Cutting Tools Outlook

Global Metal Cutting Tools Outlook

The global metal cutting tools market was valued at US$22.2 billion in 2018 and is projected to grow at a compound annual growth rate (CAGR) of 8.8 percent to reach US$38.3 billion by 2024, according to a new report by TechSci Research.

The growth is attributed to growing demand for additive manufacturing—the process of creating three-dimensional objects using a digital file. 3D printing in aerospace and automotive industries enables the production of complex geometries that are either arduous or impossible to do with traditional manufacturing techniques. As a result, replacement of traditional manufacturing techniques with 3D printing will significantly reduce the capital costs, raw material costs, and costs to reclaim scrap in the coming years.

Carbide is expected to continue its dominance in the materials category, which also includes ceramics, cubic boron nitride (CBN) and polycrystalline diamond (PCD), amongst others. In the terms of process, milling accounts for the largest share in the global metal cutting tools market.

From the geographical perspective, North America dominates the metal cutting tools industry due to the growing demand for lightweight passenger vehicles and increasing aerospace and defence budget in the region.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Direct Mount For The Stars

Direct Mount For The Stars

ARNO Werkzeuge presents the AWL direct mount for STAR Swiss type machines.

The tool holder system for turning or grooving tools (patent pending) has an integrated adjustable high-pressure coolant supply of up to 130 bar. When combined with the AFC quick-change system, users can increase productivity for Swiss type machines since the system significantly cuts set-up and non-productive times.

“After Citizen, the new AWL direct mount are available for CNC Swiss type machines from Star Micronics,” says Werner Meditz, Head of Technology at ARNO Werkzeuge. The AWL tool holder system (patent pending) works for the Star machine series SR 20R II, III and IV with immediate effect. The system has two separate cooling channels which can be selectively opened or closed. The various connection options make it adaptable to several machine types. Depending on the machine and execution, the new AWL direct mount can fit two to six tools. Each chamber has an integrated coolant supply to allow the simultaneous use of several tools, whether they have internal cooling or not.

Permits Free Tool Choice

Since the direct mount is designed with integrated cooling, it dispenses with the time-consuming connection of external and cost-intensive tubes. In addition, there are no interfering contours inside the machine. Users can operate with targeted high-pressure cooling pressures up to 130 bar and stable wedged clamping of holders during machining operations to achieve longer tool lives by over 25 percent.

It now takes only a few steps to remove and fit the tools. When turned, an integrated counter nut raises the wedge slightly to permit quick and easy tool removal and fitting. According to Meditz, “The tool system allows fast, simple tool changes with enormous change precision and high process reliability.” The direct mount can also hold the tools of other manufacturers. The freedom of tool choice is one of the greatest benefits of our AWL direct mount,” stresses Meditz, “since users are not forced to depend on only one system.”

No Calibration Required With AFC

“Users have the best benefits when they combine the AWL direct mount with the AFC quick-change system from ARNO,” assures Simon Storf, Marketing Manager. To change a tool, only the front part of the two-part holder needs to be removed and a new tool is then fitted with a different holder. This dispenses with the need for recalibration in many cases. The AWL direct mount and AFC quick-change system back the manufacturer’s claim of increasing productivity at user production locations by developing customised solutions.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top