fbpx skip to Main Content
SLM Technology Opportunities For Healthcare Applications

SLM Technology Opportunities For Healthcare Applications

Find out why selective laser melting is the ideal production technique to integrate function into medical device components. Article by Gary Tang, SLM Solutions.

Medical device manufacturers are increasingly adopting metal additive manufacturing technology of SLM Solutions—the pioneer and one of the inventors of selective laser melting (SLM) technology—to produce a wide range of medical and dental parts.

In the healthcare sector, SLM technology is used to manufacture functional prototypes for the serial production of surgical implants, to manufacture new designs of instruments and equipment, or utilized for mass customization, i.e. the production of patient-matched implants and prostheses on a large scale. Dental prosthetic components, and orthopaedic, spine and cranio-maxillofacial implants are all common applications of the SLM technology, with clear benefits to patient outcomes. 

Selective laser melting is the ideal production technique to integrate function into medical device components, such as printing surgical implants with lattice structures for enhanced osseointegration and reduced stress shielding. Designs optimized for SLM process, and those custom to patients’ anatomy, often create complex, bionic geometries only able to be manufactured with selective laser melting. The technology thereby provides productivity and cost advantages to users.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Global Metal 3D Printer Market Outlook

With Additive Manufacturing To More Productivity

Miniaturisation In Clamping Technology Thanks To Additive Manufacturing

Accelerating the Journey to Series Production

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Siemens Collaborates With Morf3D To Accelerate Adoption Of Metal AM

Siemens Collaborates With Morf3D To Accelerate Adoption Of Metal AM

Morf3D is collaborating with Siemens Digital Industries Software to promote the use of additive manufacturing (AM) in advanced design, engineering, and production qualification of metal-based product innovations across a variety of industries. This collaboration equips Morf3D with Siemens’ end-to-end AM software solution from the Xcelerator portfolio and makes Morf3D a preferred Siemens AM partner with access to software in advance of the market. In exchange, Morf3D will provide technical feedback to enhance Siemens’ product development.

“The goal of this agreement is to facilitate the advancement of an end-to-end digital solution and develop new strategies for advanced engineering and design,” said Morf3D CEO Ivan Madera.

“By partnering we can leverage our unique integrated system of work to accelerate the adoption of additive manufacturing for development and production of new applications in a variety of industries. Siemens and Morf3D make a good team to accomplish this goal. Siemens has the end-to-end software to drive applications from design through 3D printing, and Morf3D has the expertise in AM operations to leverage that software so we can qualify and deliver those applications with optimal efficiency.”

“Additive manufacturing is a viable technology for innovation in all industries. But, to achieve truly industrialised AM production takes more than technical capability. The industry needs partnerships like our collaboration with Morf3D, where ideas, know-how, AM technology, software and most importantly, people, come together to advance the art of the possible by rolling up their sleeves and fully delivering on new and inspiring applications,” said Aaron Frankel, Vice President of the AM Program for Siemens Digital Industries Software.

“The COVID-19 pandemic has amplified the importance of additive manufacturing as a technology for rapid-response innovation. However, the financial uncertainties brought on by the pandemic have made it more difficult for companies to invest in AM operations and application development. We want to help those companies by giving them the resources and know-how they need to realise their dreams for additive manufacturing,” said Madera.

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Siemens Addresses Overheating Challenges in Additive Manufacturing

Industrial Robotics Market Outlook

Data Literacy In Heavy Industries

VinFast Deploys Siemens’ Full Portfolio To Deliver Cars Ahead Of Schedule

Global Forging Market To Reach US$96B By 2025

Siemens Adds Augmented Reality To Solid Edge 2020

Ultimaker’s New Software Solution Helps Overcome Barriers In AM Adoption

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

3D-Printed Medical Devices Can Remedy Supply Bottlenecks In Times Of Pandemic

3D-Printed Medical Devices Can Remedy Supply Bottlenecks In Times Of Pandemic

During the coronavirus pandemic, the 3D printing industry has successfully set up on-demand production facilities. Medical devices are subject to strict quality requirements and must conform to an array of legal regulations. In addition, there is a shortage of contract manufacturers able to fulfil these conditions. To mitigate the situation, TÜV SÜD has drawn up a range of checklists for production processes and is providing them to manufacturers. The company is also involved in numerous initiatives.

“When borders are closed to stop the spread of COVID-19, companies are forced to adjust their supply chains”, says Gregor Reischle, Head of Additive Manufacturing at TÜV SÜD. Additive manufacturing sites using 3D printers quickly reacted by concentrating resources and reducing the pressure on supply chains. 3D printing technology was one area of focus as an option for filling gaps in supply chains, most urgently concerning nasal swabs, ventilator components and personal protective equipment (PPE). At present, additive manufacturing is also boosting supplies of key products such as face visors, ventilator valves, filters, pressure sensors and X-ray tubes for applications ranging from general healthcare to high-precision personalised devices for even the most niche markets.

The benefits of additive manufacturing in a growing market

Even before the current pandemic, analysts had forecast that the market for additive manufacturing in the medical sector would grow to be worth at least US$ 20 billion. The market for AM in dentistry is set to reach US$ 9.7 billion by 2027 with impressive annual growth of 35 per cent.

Additive manufacturing offers the significant advantage of being able to close supply chain gaps by promptly ramping up capacities in series production when needed. The technology enables complex fully functional designs to be manufactured as a single piece, eliminating the need for subsequent assembly of individual parts. This can often result in higher-quality products. It also offers the capability of creating cost-effective prototypes while shortening development lead times. The pandemic has proved that both these methods can succeed – but also revealed the extensive array of device-specific provisions and regulatory requirements which apply to the products.

Medical devices must be high-quality, high-performance and safe. Proof of their compliance with numerous conformity and safety standards must be furnished before they can be placed on the market. The products may also be subject to further specific purpose-related requirements. Personal protective equipment must protect the wearer from particles, droplet aerosols and similar (Regulation (EU) No. 2016/425). Particularly rigorous conformity and safety standards apply to face masks and visors for use in hospitals and clinics. The necessary conformity assessment takes time, which is at a premium during a pandemic.

Checklists smooth the way for market access

Guidelines help manufacturers to implement regulatory requirements reliably and promptly. To assist them in this, TÜV SÜD has drawn up checklists for the main requirements addressing additive manufacturing, both general and specific, in key standards and regulations, and has been supplying these checklists free of charge to manufacturers in the coronavirus crisis. The lists are a boon for testing laboratories, healthcare specialists and the public. In addition, international standards organisations such as ASTM International and ISO provide free access to the relevant standards concerning the manufacture and testing of personal protective equipment and medical devices.

Additive manufacturing therefore is playing a useful role in battling the pandemic and is fostering willingness to innovate, which is impacting positively on the medical and healthcare sector in general. “There are many indications that fast, integrated supply chain networks with local production operations will become the new normal”, says Gregor Reischle. But the support provided by TÜV SÜD as an impartial third party is not confined to checklists. The technical service provider also develops specific tests for additive manufacturing operations which assure the quality and consistency of industrial additive series manufacturing. With the help of the tests, contract 3D printing companies can verify their conformity with the requirements set forth in the MDD and MDR.

Initiatives and projects for combating the pandemic

Governments and industry associations, multinational companies and start-ups are turning to platforms aimed at closing knowledge gaps in the industry. Siemens has provided its 3D printers to doctors, hospitals and manufacturers in need of development of medical devices or components. In addition, the company is networking its entire supply chain from the design and simulation phases through to production.

Singapore’s AM accelerator, National Additive Manufacturing Innovation Cluster (NAMIC), has set up a website containing a comprehensive list of COVID-19 resources for medical institutions, hospitals and medical device suppliers, which can then work with 3D printing hubs to design, optimise and print parts for vital healthcare equipment.

In Singapore, TÜV SÜD participated in an inter-agency collaboration between the Health Science Authority, Nanyang Technological University (NTU) and NAMIC, aimed at guiding manufacturers through testing requirements to fulfil them reliably and rapidly. Checklists for face visors and nasal swabs are available free of charge from NAMIC’s COVID-19 response platform.

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

3D Metalforge Partners Ultimaker to Launch SEA’s Largest Industrial FFF Print Facility In Singapore

Manufacturing Industry In A Post-Pandemic World

Renishaw Ramps Up Production Of Ventilator Components

Flexible Sawing Solution for Additively Manufactured Parts

KUKA Webinar: Embracing Robotic Application In Boosting APEC Economic Performance

At High Speed From Component To Tooling

IDTechEx: Will Low-Cost Metal Additive Manufacturing Printers Be Successful?

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Where 3D Printing Makes Sense

Where 3D Printing Makes Sense

Here’s a look at how Paul Horn GmbH got its start in additive manufacturing. 

Even complicated shapes can be produced relatively easily with 3D printing.

Paul Horn GmbH launched its additive manufacturing project in spring of 2018, which led to the creation of a dedicated “selective laser melting” production area. Now, the tool manufacturer uses additive manufacturing to produce its own tools—particularly prototypes, special tools and tool holders—and to optimise coolant attachments. Having recognised the advanced possibilities offered by additive manufacturing, Horn is making these available to its customers and partners as well.

“We were captivated by additive manufacturing right from the start, and so we kept a very close eye on advances in the area of 3D metal printing. As soon as the technology had matured to the point where we could use it to manufacture precision tools, we bought our very first system,” Matthias Rommel, Managing Director of Horn, explains. “Originally, we purchased the machine for the R&D area so that we could make special tools and prototypes. During the initial period, we found that we were constantly having discussions with our customers about 3D printing. To begin with, these were purely technical; but as time went by, they led to more and more concrete enquiries for 3D-printed components. Due to the strong interest from customers, we eventually came up with the idea of setting up an additional contract manufacturing business unit for additively manufactured components. In terms of technology, we opted for a DMG Mori LASERTEC 30 (2nd generation).”

It makes sense to use additive manufacturing if it generates a technological advantage. However, in many cases, there is no economic benefit to using additive manufacturing for a component that used to be produced by conventional methods. One example would be a turned part that can be produced relatively quickly on a Swiss-type lathe. Not only that, but additive manufacturing would also be too expensive in terms of post-processing. Other disadvantages compared to conventional production include relatively poor surface quality (Rz 30 µm), accuracies down to only ±0.1 mm, and the high cost of powder compared to bar. 

Greater Design Freedom

As the complexity of a component begins to rise, additive manufacturing becomes more relevant. This may be driven by the need for lightweight design, special cooling channel layouts and small batches of components with highly complex geometry. Consequently, the disadvantages have to be weighed against the benefits of greater design freedom, lightweight construction, quick adaptability and speedier production for more complex parts. In the future, it therefore makes sense for this option to be included in the preliminary considerations as part of each design process.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Metal 3D Printing Revolutionises Valve Design and Manufacturing

KUKA Webinar: Embracing Robotic Application In Boosting APEC Economic Performance

3D Scanning Prevents Production Downtimes

Global Steel Production Remains Stable

3D Printing And Counterfeit Automation Parts

Portable 3D Metrology: Combating Common Challenges in Large Parts and Assemblies

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

How 3D Printed Titanium Motor Nodes Became A Game-Changer In E-Bikes

How 3D Printed Titanium Motor Nodes Became A Game-Changer In E-Bikes

Motor nodes are one of the hardest e-bike parts to manufacture. When GSD Global turned to Sandvik’s experts in metal powder and additive manufacturing to 3D print their motor nodes in titanium, they found they could achieve a lighter, more durable and much more energy efficient solution.

GSD Global is an engineering and design consultancy with long-standing experience in creating premium electronic bicycles, or e-bikes. Heading the organization is Zach Krapfl, an electric vehicle engineer based in Paonia, Colorado, in the United States. Krapfl is dedicated to global energy conservation and reducing fossil fuel consumption — and combines bicycles, light electric vehicles and renewable energy technologies as a catalyst for sustainable transport.

As with any artform, high-end bicycles are typically handcrafted to satisfy the specific palate of true bike connoisseurs. “Handmade bikes are pieces of art to begin with. So, if we can provide these high-end bicycle makers with a material that can make their bikes last 10 to 20 years, that’s a game-changer to them,” said Krapfl.

GSD Global works with various bicycle OEMs (original equipment manufacturers), with the majority of their design work focusing on e-bikes. For almost a decade, they’ve been partnering with Bosch e-bike systems to testify that, up until recently, e-bike uptake has been slow. Part of the explanation is thought to be that titanium parts such as the motor node that holds the electric motor onto the bike frame are very difficult to machine using traditional CNC processes — and costly at that.

When GSD Global turned to Sandvik to investigate the possibility of 3D printing their titanium components, they found that by developing the design of the motor nodes and adapting them to be additively manufactured, they could reduce their costs by more than 50 per cent.

Using powder bed fusion laser technology, Sandvik 3D printed the motor nodes using its Osprey Ti6AI4V powder. Typically, these grades are used in the medical, aerospace, automotive and engineering industries for applications that require significant weight saving while maintaining high strength and performance. The motor nodes then underwent heat treatment and sandblasting during post processing.

By providing their OEMs with Sandvik’s 3D printed titanium motor nodes, GSD Global can help them to create the ideal e-bikes that will not only cost less and thereby be increasingly sellable, but can also last longer and with increased energy efficiency.

After mastering 3D printed motor nodes, and with the launch of Sandvik’s new titanium plant, its Osprey metal powders, materials expertise and leading capabilities across the additive value chain, the possibilities for additively producing other bicycle parts seem endless.

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Doosan Machine Tools Partners With TITANS Of CNC

Schuler Appoints New Head Of Service

Foton Motor Involved In Thai Cave Rescue Mission

TÜV SÜD PSB Signs MoU With NUS For Medical Device Additive Manufacturing

Overcoming Difficulties With A Rewarding Material

Toyota To Open New Vehicle Plant in Myanmar

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

Simulation Irons Out Metal Binder Jetting Defects To Enable Mass-Production AM

Simulation Irons Out Metal Binder Jetting Defects To Enable Mass-Production AM

Simufact, part of Hexagon’s Manufacturing Intelligence division, has introduced metal binder jetting (MBJ) simulation, that is enabling manufacturers to predict and prevent the distortion that sintering processes will have on parts at the design stage for the first time. The new simulation tool marks a significant step forward for additive manufacturing because it helps manufacturers achieve the quality they require while exploiting the unique benefits MBJ offers for volume production.

Metal binder jetting is an emerging additive manufacturing technology that has several key advantages over common powder bed fusion processes; high volumes of parts can be printed with minimal spacing; no support structures are needed, and larger lot sizes are possible. It has the potential to replace low-volume, high-cost metal injection moulding for everything from automotive and aircraft parts to medical applications. Because high resolution is possible, it could also reduce the cost and lead times for production of complex and lightweight metallic parts such as gears or turbine wheels.

However, early adopters can expect a steep learning curve to learn how to achieve the quality they need to exploit these benefits. One key challenge has been predicting changes during the sintering process. A part can shrink as much as 35 percent and the simple shrinkage models used for other processes cannot predict distortion during the post-build sintering process. Until now, costly physical trials were required to perfect the printing of each part, preventing many manufacturers realising the low cost and flexibility MBJ offers.

Made available to existing Simufact Additive customers in August, the new tool extends its capabilities for MBJ processes. Manufacturers can predict the shrinkage caused by factors such as the thermal strain, friction, and gravity during sintering without specialist simulation knowledge. By compensating for these changes, parts can be 3D Printed as they are designed, and production teams can significantly reduce the proportion of parts that must be scrapped or re-processed. Sintering-induced mechanical stress is also predicted before print, indicating where defects might occur. Manufacturers can use this information to make changes earlier in their product development and reduce the need for costly redesign.

Designed for busy manufacturing professionals, the tool can automate the model setup, preparing the CAD or CAE file for manufacturing simulation and simulations can also be automated through Python scripts. To validate the sintering compensation and increase confidence in quality, the optimised geometry from the MBJ tool can be immediately compared to both the initial design (CAD) geometry and a metrology scan of a manufactured part within user interface.

“We are pleased to introduce the first solution for simulating metal binder jetting sintering process to the market so that manufacturers can take advantage of this important new method. We know customers see metal binder jetting as a pivotal technology for manufacturing, particularly where there’s a need to need to produce intricate parts at high volumes like the automotive industry.

This development was only possible through close collaboration between our manufacturing and printer equipment partners and our highly experienced research & development department,” said Dr. Gabriel McBain, Senior Director Product Management, Simufact & FTI.

For other exclusive articles, visit www.equipment-news.com.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Sandvik And BEAMIT Advances Additive Manufacturing

Sandvik And BEAMIT Advances Additive Manufacturing

Sandvik and BEAMIT have made several important advances in metal additive manufacturing (AM) over the last six months. Most recently the BEAMIT Group acquired ZARE, meaning that two leading additive manufacturing service bureaus in Europe join forces to become one of the largest independent AM service providers, serving the most demanding industries.

In July 2019, Sandvik acquired a significant stake in leading European-based AM service provider BEAMIT, with the right to further increase its stake over time. BEAMIT is a trusted supplier of advanced metal AM-components to demanding industries, including e.g. aerospace, space, automotive and energy – with a number of relevant quality certifications, such as AS9100 for aerospace and heat treatments NADCAP approval. The company complements Sandvik’s additive manufacturing offer, which includes the widest range of metal powders for AM and leading expertise across the entire AM value chain.

Creating a leading am service provider with more than 100 employees

The merger of BEAMIT and ZARE has created an AM-organisation with more than 100 employees based at five facilities, all located within a 40 km area between Parma and Reggio Emilia in Italy. The new Group also has four commercial offices in France, Germany, the UK and Japan.

BEAMIT and ZARE will continue to operate under their respective brand names, but activities will be consolidated under the BEAMIT Group. Together the service offering encompasses a range of materials, different AM process technologies, post processing methods and critical quality certifications aligned to demanding industries like aerospace, defense and energy.

BEAMIT’s acquisition of ZARE, follows their recent investment in PRES-X, which specialises in AM post-processing. PRES-X is the first company in Europe with the capability to perform high pressure heat treatments on 3D printed production parts, along with other advanced post processing methods like roughness surface smoothening preparation on external and internal surfaces, depowdering etc.

New state-of-the-art powder plant for titanium and nickel-based super alloys

In parallel with the activities within the BEAMIT Group, Sandvik has recently commercialised a new state-of-the-art powder plant for Osprey titanium– and nickel-based super alloys, which means that the company offers the widest range of AM alloys on the market. The new plant already received the prestigious ‘AS9100 Revision D’ certification for deliveries to the aerospace industry – as well as the ‘ISO 13485:2016’ certification for deliveries to the medical segment. Sandvik’s powder production facilities in Neath, UK, has also recently been awarded the ‘AS9100D’ certification for aerospace.

Kristian Egeberg, President of Sandvik Additive Manufacturing, says: “The AM sector is developing fast and there is a need for AM-specialist-partners with the advanced skills and resources required to help industrial customers develop and launch their AM programs. The new AM-constellation consisting of Sandvik and the BEAMIT Group is extremely strong – and will provide our customers with the opportunity to access the complementary and combined power of several leading players, covering the entire AM value chain.”

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

3D Printing And Counterfeit Automation Parts

Upcoming Webinar: AM Deployment and Future Developments in Southeast Asia

New Update For Hypertherm Robotmaster Robotic Software

Accelerating the Journey to Series Production

Siemens Connects Healthcare Providers And Medical Designers To Produce Components Through AM

GM Accelerates 3D Printing Capability With Stratasys

IDTechEx: Will Low-Cost Metal Additive Manufacturing Printers Be Successful?

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Sandvik AM Achieves Medical Certification For Its Titanium Powder Plant

Sandvik AM Achieves Medical Certification For Its Titanium Powder Plant

Sandvik’s new powder plant in Sweden has received the ‘ISO 13485:2016’ medical certification for Osprey titanium powders, now approved for use in the additive manufacturing of medical applications. “This standard will reassure our customers that Sandvik has the necessary quality management systems in place to meet the stringent requirements of the medical industry”, says Keith Murray, VP and Head of Global Sales, Sandvik Additive Manufacturing.

Additive manufacturing (AM), also known as 3D printing, is already playing a significant role in the medical segment. With additive manufacturing, implants and prostheses can be manufactured directly from an individual patient’s anatomical data. This allows these customized products to be manufactured quickly, significantly enhancing the healing process and improving the prognosis for the patient.

“Achieving the ISO 13485:2016 medical certification will allow our medical customers to complete the necessary regulatory supplier approvals when bringing a medical application to market, utilising Osprey titanium powders from Sandvik,” says Keith Murray, VP and Head of Global Sales at Sandvik Additive Manufacturing.

The properties of the metal powders used, directly impact the reliability of the performance of the AM-process, as well as the quality and performance of the finished product. This medical certification ensures that best practices and continuous improvement techniques – including the company’s development, manufacturing, and testing capabilities – are leveraged during all stages of the powder lifecycle, resulting in a safer medical device.

Complete traceability – from titanium sponge to finished powder

Product traceability is especially important in the medical industry. Sandvik offers a complete traceability for its titanium powder, made possible by having the full supply chain in-house – from titanium sponge to finished powder. The new titanium powder process uses advanced electrode induction melting inert gas atomization technology to produce highly consistent and repeatable titanium powder with low oxygen and nitrogen levels. The production facility also includes dedicated downstream sieving, blending and packing facilities – integrated through the use of industrial robotics.

Titanium has exceptional material properties, being strong yet light and offering high levels of corrosion resistance. At the same time, it is biocompatible. However, the cost and complexity of machining from titanium billet have historically restricted its use. Additive manufacturing opens up new opportunities.

Powder metallurgy is also labelled a ‘recognized green technology’ – and the net-shape capability of technologies like additive manufacturing not only means that material waste is minimized, but also that great energy efficiency can be achieved, by eliminating manufacturing steps.

The first two powders produced at the plant will be Osprey Ti-6Al-4V Grade 5 and Osprey Ti-6Al-4V Grade 23. Other alloys are available on request. In addition to the ISO 13485:2016 and AS9100D certifications, the new titanium powder plant is also certified according to ISO 9001, ISO 14001 and ISO 45001.

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Renishaw And Sandvik To Collaborate On Additive Manufacturing Ambitions

ExOne Partners With Sandvik Additive Manufacturing To Advance Binder Jetting

Sandvik Creates First 3D Printed Diamond Composite

Empowering Manufacturing Transformation

Sandvik And Renishaw Collaborate To Qualify New AM Materials

3D Printing Metal Market To Be Worth $5.51 Billion By 2027

3D Printing And Counterfeit Automation Parts

Accelerating the Journey to Series Production

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

New Update For Hypertherm Robotmaster Robotic Software

New Update For Hypertherm Robotmaster Robotic Software

Hypertherm has released the Robotmaster Version 7.3 offline robot programming software with extensive features and enhancements designed to further simplify robotic programming.

Additions found in V7.3 include:

  • Support for the newest CAD file types, 3D printing software, and third-party plugs-in for software brands such as CATIA, SolidWorks, Autodesk Inventor, Siemens, Solid Edge, AutoCAD, Pro-E/Creo, Rhino, and more.
  • Performance improvements for faster data processing and robot code output when creating additive manufacturing paths in addition to post processor enhancements for major robot brands such as Kuka, ABB, and Fanuc.
  • The addition of new modules including a spray simulation module for companies who use robots to spray, coat, or paint products as well as a module that simulates material deposition during additive manufacturing, adhesive dispensing, welding, and similar applications.
  • Numerous productivity enhancements to existing modules for more accurate time estimates, the ability to quickly import g-code from 3D slicing software including Cura and Slic3r, and the ability to automatically set a cutting direction based on material location with respect to the path.
  • Notable enhancements to the path import module providing users with an option to read custom instructions and set process activations and deactivations directly from imported code and enjoy a more accurate interaction, process simulation, and robot code output for both g-code and APT formats.

“The many new features found in V7.3 are based on close work with many of our current customers to understand how we can further streamline offline robotic programming,” explains Garen Cakmak, leader of Hypertherm’s Robotic Software Team.

“By adding support for more software types, files, and robots, we are helping customers solve sometimes complex challenges quickly and easily.”

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Robots On Subscription: RaaS Model In The APAC Region

Siemens Expands PLM Portfolio With New SaaS Offering

Two Industry Veterans to Lead FARO’s Global Hardware, Software R&D Teams

3D Printing Metal Market To Be Worth $5.51 Billion By 2027

Ultimaker’s New Software Solution Helps Overcome Barriers In AM Adoption

Schunk Releases Robot Deburring Tool

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

3D Metalforge Partners Ultimaker To Launch SEA’s Largest Industrial FFF Print Facility In Singapore

3D Metalforge Partners Ultimaker to Launch SEA’s Largest Industrial FFF Print Facility In Singapore

Ultimaker and Metalforge has partnered for the launch of Southeast Asia’s largest industrial FFF printing facility. The new facility will offer industrial-grade, fused filament fabrication (FFF) 3D printing from Ultimaker’s professional S-Line 3D printers, providing a complete ecosystem of certified 24/7 printers, engineering materials, 3D print fleet management and 3D print preparation software. Against the backdrop of increasing demand for 3D-printed parts, this will enable 3D Metalforge to ramp up its printing capabilities for its clients in the defence, maritime, medical, and the oil and gas industries.

The print facility, located in the western part of Singapore, comprises 21 units of Ultimaker S3 3D printers. Metalforge decided to invest in FFF 3D printers with Ultimaker, due to the latter’s partnerships with large globally operating material companies through the Material Alliance, an open platform that consists of more than 45 brands and 150+ material types. This has enabled 3D Metalforge to broaden its offerings, catering to diverse needs and requirements in different sectors.  It is currently printing various parts required for COVID-19-related projects.

3D printing which is also known as additive manufacturing (AM), is suitable for such projects as there are limitations to traditional manufacturing — the challenge of tight deadlines, and rapidly changing design parameters. Additionally, AM is more suited for high-mix, low-volume production, common factors necessitated by the changes brought on by the pandemic.

“We deal with clients from blue-chip companies that have stringent criteria on the production of end-use parts. It is thus imperative that we invest in reliable FFF 3D printers that can meet our needs and benchmarking standards”, said Mr Matthew Waterhouse, CEO of 3D Metalforge.

“Ultimaker also has an open solution that allows us to work with over 150 materials. This has enabled us to experiment and/or print with the most suitable material, depending on customers’ needs. Furthermore, I am pleased with the excellent after-sales support that I have received to date,” he added.

Reported by Media Outreach.

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

TRUMPF To Unveil Automated Mass 3D Printing Solution At Formnext 2019

Siemens Expands Additive Manufacturing Portfolio Through Acquisition Of Atlas

Mitsubishi Motors To Invest Seven Billion Baht In Its Thailand Facility

Global Aerospace 3D Printing Market Poised To Surpass $2,857 Million By 2024

Customising For Efficient And Consistent Performance

3D Printing Metal Market To Be Worth $5.51 Billion By 2027

IDTechEx: Will Low-Cost Metal Additive Manufacturing Printers Be Successful?

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top