skip to Main Content
3 Applications To Consider For 3D Laser Scanning

3 Applications to Consider for 3D Laser Scanning

While 3D scanning is often used as a comprehensive term, it actually represents several different types of equipment and best practices, only one of which may be right for your manufacturing application. This article discusses the key considerations in choosing the tracking needed for your work. Article by Automated Precision Inc. (API Metrology).

As manufacturing deadlines grow tighter and their tolerances more demanding, 3D laser scanning has become one of the most sought-after quality control processes across all industries. The ability to capture hundreds of thousands of points per second has made 3D laser scanning a fast and efficient tool for rapid point-could generation, 3D CAD modeling, part inspection, and Building Information Modeling (BIM). And in many industrial environments, 3D laser scanners are now used to supplement, if not outright supplant, probe or touch scanning measurements. 

But while 3D laser scanning has become a catch-all term used by facilities looking for scanners and service providers, the applications that term represents actually cover a wide-range of equipment and techniques. And these different scanners are each only appropriate for a specific set of the applications listed above. So, how can you know which 3D scanning service or piece of equipment is the right one for your application? The best way to begin narrowing down the options is usually by looking at the size of the part or area that needs to be scanned and the tolerances that scan will need to meet.

When we approach 3D laser scanning from this perspective, most scanning applications fit into one of three categories:

Small Part Inspection Work

For many manufacturers today, the most common application of 3D laser scanning is for inspecting small parts for prototype inspection, reverse engineering, CAD comparison, and other quality inspection checks. This scanning work is usually performed on pieces smaller than a few meters in length or diameter. And, fortunately for quality inspectors, there are several tools that can perform these kinds of checks, from hand-held scanners to multi-axis arms. The key for these inspections is accuracy, which is why the equipment that is best for small part inspection work typically uses Triangulation to produce the most accurate data.

Triangulation for 3D laser scanning is a process where the laser emitter, the laser point on the inspected part, and the scanner’s high definition camera make up the three points of a triangle. The software uses the known quantities of the distance between the laser emitter and camera and the angle at the laser emitter’s corner and calculates the camera’s angle to the laser point to discern the rest of the information about the triangle. This allows the distance between laser emitter and laser point and the angle of the point to the camera to be analyzed. 

The laser’s beam contains hundreds of thousands of these points that are moved across the part every second, and the software records the changes in distance and angle to repeatedly calculate those triangle values for each point and create useable surface information in a working computer model. This virtual model of the part can be used for CAD comparison, part or mold validation, reverse engineering of a new CAD model, and more.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

New Dimensions In Deep-Hole Drilling With Walter

TRUMPF Launches New Programming Software for Laser Tube Cutting Machines

Rolls-Royce Establishes Covid-19 Data Alliance To Kickstart Businesses And Economy Recovery

Automation Trends in Metalworking

FARO Launches Latest 3D Portable Gage CMM

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top