skip to Main Content
Hexagon Simplifies Horizontal Arm CMM Retrofitting

Hexagon Simplifies Horizontal Arm CMM Retrofitting

With the DEA MERCURY FX solution, Hexagon’s Manufacturing Intelligence division has simplified the retrofitting of horizontal arm coordinate measuring machine (CMM), enabling automotive and other large part manufacturers to adopt smarter, more automated manufacturing practices while reusing their existing horizontal arm CMM guideway assets. Hexagon’s DEA MERCURY FX meets customers’ demands to combine the accuracy of horizontal arm CMMs with technology advances, such as automation and multisensor capabilities, so they can switch easily between tactile probe and non-contact measurement while capturing data that helps them improve manufacturing processes.

To help manufacturers shift to smarter working more quickly, Hexagon’s DEA MERCURY FX allows them to upgrade to the latest metrology tools and software features, while reusing their existing base tables, even if it is not a Hexagon system. Eliminating the need to replace base tables from a wide range of suppliers minimises disruption and downtime. DEA MERCURY FX is also available as a new standalone horizontal arm CMM solution for manufacturers.

“The horizontal arm CMM’s accuracy means many manufacturers want it to be part of their future automation strategy. By designing the DEA MERCURY FX for installation on existing base tables, Hexagon helps manufacturers upgrade to a horizontal arm CMM that supports features such as multisensor capabilities and the latest metrology software,” said Paolo De Bortoli, product line director, Horizontal Arm CMMs. “The move reflects our strategy to help manufacturers maximise the use of their existing metrology assets as they adopt new technologies that make their factories smarter and more productive.”

The DEA MERCURY FX is a multisensor horizontal arm CMM that supports both tactile and non-contact scanning. It enables OEMs and suppliers in the automotive, aerospace, defence and railway sectors, as well as manufacturers of large mechanical parts and earth moving machinery to continue to benefit from the precision of horizontal arm CMMs while adopting new, more automated and smarter metrology software and tools.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Hexagon To Showcase Digital Transformation Of Aerospace Manufacturing At Paris Air Show 2019

Hexagon To Showcase Digital Transformation Of Aerospace Manufacturing At Paris Air Show 2019

Hexagon will demonstrate how it is innovating to meet the fast-evolving needs of the aerospace and defence industries with a range of connected software and hardware systems at the Paris Air Show 2019, which is being held on June 17–23.

Visitors to the aerospace exhibition will see first-hand how discrete software and hardware solutions from Hexagon’s Manufacturing Intelligence division connect to form tool chains that lay the foundations for data-driven aerospace manufacturing ecosystems. On Hexagon’s stand, a continuous digital process, using digital twin and equipment monitoring technology, will show the development of an aeroengine blade from the design and engineering stages, through production, to the final quality inspection of the finished blade by the GLOBAL S HTA CMM solution.

Hexagon’s software and hardware systems underpin aerospace manufacturing at every level of design, production and final assembly on all sizes of parts and types of aircraft. They also support aircraft maintenance repair and overhaul. A Leica Absolute Tracker ATS600 on the stand will display the benefit of using large-volume 3D measurement for large structural assembly.

At the Paris Air Show, there will also be an opportunity to see Hexagon’s Geospatial division’s demonstration of a 3D flight training simulator based on Luciad technology. It combines static flight plans and dynamic aeronautical data, and provides real-time and post-training feedback and evaluation of any deviations from the designated flight plan and the disruptions that might cause.

Hexagon will be on hall 2B, stand D157.

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Renishaw Encoders Support The Latest DUKIN CMM Design

Renishaw Encoders Support The Latest DUKIN CMM Design

The co-ordinate measuring machine (CMM) has become an indispensable tool in the process control regimes of modern production lines. Whether in-line or off-line, CMMs provide the most accurate measurements of parts ranging from turbine blades to engine piston rings.

This case study explores how DUKIN designs CMMs that minimise measurement errors through robust mechanical design and position feedback and how the recent expansion of the DUKIN product range to cover a variety of different accuracy and capacity requirements has been supported by Renishaw.

Background

DUKIN Co., Ltd., based in Korea, designs and manufactures a wide range of coordinate measurement machines (CMMs) that meet standard to ultra-high precision levels of metrology requirements in the electronics, automotive, aerospace and other industries.

These CMMs are used to capture three-dimensional measurement data on high precision, machined components such as car engine cylinders and aircraft engine blades as part of a quality control process.

The CMMs integrate either Renishaw optical or laser encoder systems to meet varying metrology challenges.

Linear position encoders are used in conjunction with Renishaw contact and vision probing systems to measure discrete points on a workpiece. This data is then used to ensure that parts meet predetermined tolerances.

Challenge

Manufacturers require CMMs that achieve high performance and system stability, which is affected by temperature fluctuations and greatly impacts overall accuracy. The instability in linear position measurements taken on the gantry axis affects inspection throughput and measurement accuracy.

Even when deploying Renishaw’s high speed 5-axis systems, which synchronise the movement of the 3 axes of the CMM and the 2 axes of the measuring head to inspect the part, the stability of the linear position measurements is important.

Solution

DUKIN uses Renishaw’s PH20 and REVO 5-axis probe systems on their CMMs with the understanding that robust CMM design is essential to realise the full performance potential of these measurement systems.

System designers at DUKIN deploy robust design principles and use high quality materials and components to minimise the amount of measurement error. These mechanical design approaches are applied in conjunction with software that compensate for errors caused by thermal expansion.

A combination of statistical and theoretical modelling and accurate live measurements of position and acceleration are used for force feed-forward control of the CMM’s motor driven axes.

For example, in a CMM bridge design; the X-axis (along the bridge) is driven along two guideways in the Y-axis direction where each shoulder of the bridge is driven by a linear system equipped with a separate servo motor.

To prevent a torque moment in the Z-axis direction and thereby distortion of the bridge structure, force feed-forward control is applied by the controller. This depends on the detected position of the measurement head as it moves along the X-axis guideway and the setpoint acceleration along the Y-axis.

Alternatively, comparison of the accelerations of the Y-axis guideways may provide additional feedback control of the bridge moment. Dependable, high-accuracy, position encoders are vital for these complex control regimes to work. A combination of a priori data and position and acceleration feedback in the X-, Y- and Z- axis directions are used to give the highest-levels of metrology performance.

Results

Renishaw encoders and scales are used across the full range of CMMs offered by DUKIN and the TONiC incremental encoder system with RTLC linear scale is installed on DUKIN’s gantry and bridge-type models.

RTLC is a low profile stainless steel tape scale featuring a 20 µm pitch. It is accurate to ±5 µm/m and may be ordered in lengths of up to 10 m. Any thermal expansion of RTLC scale is independent of the substrate as it is suspended in a carrier track, which maintains an air gap underneath the scale. As temperature changes occur in the CMM operating environment, the RTLC scale does not follow the same degree of deformation as the granite base. Thermal compensation is therefore greatly simplified – particularly in temperature controlled environments with the encoder scales and workpiece(s) in thermal equilibrium.

TONiC’s dynamic signal processing gives improved signal stability with ultra-low Sub-Divisional Error of typically <±30 nm to help realize superior motion control performance.

Regarding the role of Reinshaw’s innovations in DUKIN’s product lines, DUKIN Technical Manager, Tae Young Ku, has emphasized the important contribution of Renishaw’s encoder products by stating that: “We offer a wide range of CMM product lines, including standard, high precision and ultra-high precision models, depending on the type of position feedback. We have adopted Renishaw’s TONiC encoder series and the ultra-high precision RLE interferometry laser encoder system. The high-performance TONiC encoder is the most widely used and has been integrated into our CHAMP, HERO and VICTOR CMMs.”

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

Hexagon Launches Fixed-Line Blue Laser Scanning Sensor

Hexagon Launches Fixed-Line Blue Laser Scanning Sensor

Hexagon’s Manufacturing Intelligence division has launched its first blue laser scanning sensor for creating point clouds. The HP-L-5.8 joins Hexagon’s comprehensive range of tactile and non-contact sensors for CMMs and is designed for companies who need a versatile, affordable, fixed-line laser sensor.

The HP-L-5.8 performs equally well when taking point cloud measurements from dark or shiny surfaces. Designed to be rugged and compact, it protects the sensor from collisions and vibrations and is ideal for use in areas where accessibility is restricted as well as on smaller CMMs.

“Increasingly our customers want to add the speed and wide measurement coverage of laser scanning to their CMM’s capabilities,” says Christian Schorr, Hexagon’s Product Manager for Laser Scanners on CMMs. “The HP-L-5.8 meets our customers’ demand for an accurate, affordable laser scanner that turns a CMM into a multisensor machine that can switch easily between tactile probing or laser scanning in a single part program.”

The HP-L-5.8 is seamlessly compatible with Hexagon CMMs that use PC-DMIS 2018 R2 and subsequent versions of the software and works with an automatic indexing probe head or continuous wrist, making it easy to operate for users of tactile probing tools.

The HP-L-5.8 is available worldwide.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

An Insight Into The Utilisation Of Measurement Sensors In Manufacturing Processes

An Insight Into The Utilisation Of Measurement Sensors In Manufacturing Processes

Manufactured parts need to be measured to ensure they meet the original design intent. Modern manufacturing techniques allow complex parts to be designed with numerous critical dimensions. A key element in precision metrology is having the right measurement tool for the job. Modern measurement machines use a variety of sensors to collect measurement data. Metrology software analyzes the measurement data, and through numerical and graphical reports, allows the user to make confident decisions about the part design and manufacturing processes. By Terry Herbeck, Vice-President of Asian Operations at OGP

Read More
Renishaw: SFP2 Surface Finish Measurement Probe

Renishaw: SFP2 Surface Finish Measurement Probe

Renishaw’s SFP2, a surface finish measurement probe designed for use with the REVO 5-axis measurement system on coordinate measuring machines (CMMs), increases the REVO system’s surface finish measurement ability.

The REVO system offers a multi-sensor capability with touch trigger, high speed tactile scanning and non-contact vision measurement on a single CMM.

The surface finish system is fully integrated with the standard CMM inspection program, thanks to the automatic changing of the SFP2 probe and stylus holders using the MRS-2 rack and RCP TC-3 ports. It is managed by the same I++ DME compliant interface as the REVO system, and the MODUS metrology software provides full user functionality.

Back To Top