fbpx skip to Main Content
The Next Big Thing In Wire EDM

The Next Big Thing in Wire EDM

Despite the many important and critical machine improvement points over the years, wire EDM machining speeds have remained relatively flat over the past decade… until now. Find out more in this article by Makino.

Wire EDM machining technology has seen continuous development to improve the reliability and efficiency of the process. These efforts have nurtured this non-traditional machining process to grow in use to become a mainstream method of manufacturing for an increasing number of industries. From its humble beginnings that revolutionized the tool and die building process, wire EDM has matured and expanded its use to direct parts production, especially in the medical and aerospace fields.

The latest generation wire EDM machines are better in almost every way compared to their predecessors, which has helped elevate the wire EDM process to become a daily relied upon manufacturing method. In recent years, many wire EDM manufacturers have focused developments on items that address and enhance the reliability of the process. This includes items such as simplifying the control interface, improving automatic wire threading capabilities, reducing machine maintenance requirements, and reducing wire consumption costs. While these are all important and critical machine improvement points, Wire EDM machining speeds have remained relatively flat over the past decade… until now!

Makino has introduced a new wire EDM machine, the U6 H.E.A.T. Extreme, that has been developed to take machining speeds to new levels of performance and efficiency. At the core of these new capabilities is the use of a larger diameter wire—0.016” (0.4mm)—elevating the U6 H.E.A.T. Extreme as the fastest wire EDM machine on the planet.

Is Bigger Better?

The key benefit in using a larger diameter wire is that it allows higher power levels to be applied, which result in increased machining speeds. There is a physical limit to how much power a particular wire size can withstand (spark density—the maximum amount of power that can be applied to the electrode over a specific area), as exceeding this level will result in a wire break; although there are other factors that contribute to wire breakage. Comparing 0.016” diameter wire to the traditionally used 0.010” diameter wire, the cross-sectional area is 265 percent larger.

Comparison of Wire Size

Using a larger diameter wire alone will not necessarily achieve higher performance. A larger wire supports higher power levels, but the 0.016” diameter wire size exceeds the power output capability of most machines, as wire EDM generators are commonly configured and optimized for 0.010” diameter operation. Stated differently, a standard wire EDM generator does not have a sufficient amount of additional/reserve electrical power to apply to the cut to operate at optimum levels with 0.016” diameter wire and will therefore starve and impede the process from achieving faster speeds.

To achieve faster cutting speeds using 0.016” diameter wire, the U6 H.E.A.T. Extreme machine is configured with an additional generator booster that increases the maximum average machining power from 30 A to 60 A. This booster unit increases the machine’s kVA power consumption by about 50 percent over the base U6 H.E.A.T., but this increase in power consumption is fully justified and offset by the gains in rough machining speed.

More Enhancements

The U6 H.E.A.T. Extreme builds and expands on the existing U6 H.E.A.T. machine and retains all the standard machining capabilities to achieve high accuracy and fine surface finish with wire sizes down to 0.004” (0.100mm) diameter. The “Extreme” portion entails special enhancements that focus on the operation of 0.016” diameter wire. Beyond the need for increased machining power, additional development and modifications are necessary to achieve reliable automatic wire threading with 0.016” diameter wire, which represents a severe technical challenge.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

WALTER: New Eroding And Grinding Machine With The Well-Known “Two-In-One” Concept

WALTER: New Eroding And Grinding Machine With The Well-Known “Two-In-One” Concept

For some time the market has been demanding that machine tools must be “more flexible”, “universal” and “automated”. The equally important requirements of “more specialised” and “more cost-effective” often cannot be reconciled with these demands. However, this is exactly what WALTER has achieved with the latest extension of the EDM machine portfolio, the HELITRONIC RAPTOR DIAMOND. WALTER offers the right machine solution for the eroding of tools for every customer application.

Flexible and cost-effective:

The HELITRONIC RAPTOR DIAMOND is a flexible and universal tool erosion and grinding machine especially designed for the re-sharpening of PCD tools. Equipped with the “Two-in-One” concept from WALTER, which has been tried and tested for almost two decades. Whether for wood or metal tools, the HELITRONIC RAPTOR DIAMOND offers highest flexibility. It is equipped with the FINE PULSE TECHNOLOGY, which since its introduction a few years ago has set new standards in eroding technology. With the finest frequency, users can produce a perfect surface finish and cutting edge on a PCD tool without compromising the machining time.

The specialised equipment of the HELITRONIC RAPTOR DIAMOND:

“Specialised” means in this case: optimising the important equipment options so that the HELITRONIC RAPTOR DIAMOND is targeted at the re-sharpening sector of PCD tools, in which one usually

– does not require a large variety of automation

– does not require automatic tool support systems

– does not require an automatic change of electrodes and grinding wheels

– but still requires a high degree of flexibility in the working area for large and diverse types of tools.

For this reason, the HELITRONIC RAPTOR DIAMOND – unlike other machines from WALTER – is not configured for optional wheel/electrode changer, robot loader or hydraulic tool support systems. As with all other WALTER “Two-in-One” EDM and grinding machines, the standard delivery includes the electrode/grinding wheel mounting via an HSK interface.

Tools with a maximum diameter of 400 mm and a maximum length of 270 mm including end face operation can be eroded or ground with the HELITRONIC RAPTOR DIAMOND. For automatic loading of up to 500 tools, an optional top loader, integrated in the working area, is available.

Further equipment features are:

– Fine Pulse Technology

– 11,5 KW spindle motor

– Grinding and EDM software HELITRONIC TOOL STUDIO

– Walter Window Mode P51 / P52

– Top loader (option)

– Glass scales (option)

– Torque drive for the A axis (option)

– Probe for measuring the grinding wheels (option)

– Manual support steady rest (option)

– and other options

 

For other exclusive articles, visit www.equipment-news.com.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Top 10 Metal Cutting Articles For 2019

Top 10 Metal Cutting Articles for 2019

As we move into 2020, we take a look back at the most popular metal cutting articles for 2019. For your enjoyment, here is the list of the top 10 most read metal cutting articles over the past year.

  1. Increasing Automation, Connectivity And Energy Efficiency In Metal Cutting
  2. The Perfect Combination for Structural Parts—Faster, Better, Lower Cutting Forces
  3. Adapting Cutting Tools To Changing Trends
  4. Efficient Machine Tooling
  5. Getting Ahead in the Medical Market
  6. Market Outlook 2019: An Insight Into This Year’s Industry Megatrends
  7. EDM: Past, Present and Future
  8. A Look at Walter’s Two-in-One Machining Concept
  9. Choosing the Best Machining Centre for Your Application
  10. New Demands, New Solutions

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Micro Electrical Discharge Technologies

Micro Electrical Discharge Technologies

Micro EDM is an important micro manufacturing process because it is unconstrained by the hardness or material strength of the material being machined. Article by Sodick.

Micro electrical discharge machining is similar with the principals of electrical discharge machining (EDM), a thermal process that uses electrical discharges to erode electrically conductive materials. EDM has a high capability of machining the accurate cavities of dies and mould. It is an effective technique in the production of micro components that are smaller than 100µm.

The main differences between micro EDM and conventional EDM are the size of the electrode used, the power supply (current and voltage), and the resolution of the X-, Y- and Z- axes movement. Micro EDM is a process based on thermoelectric energy between workpiece and electrode. In micro EDM, the pulse generator produces very small pulses within a pulse duration of a few microseconds or nanoseconds. Therefore, micro EDM utilizes low discharge energies to remove small volumes of material.

Micro EDM is an important micro manufacturing process because it is unconstrained by the hardness or material strength of the material being machined. It has a wide implementation because there is no direct contact between the electrode and machined component; hence, no contact forces are induced during the machining process. Which is why it is highly suitable for machining all types of conductive metals and semiconductors.

One example is Sodick’s AP30L linear motor-driven die-sinker EDM, which features ultra-precision machining and achieves high speed and quality surface finish by adopting the stable EDM system Arc-less 4. This series has been developed for the purpose of improving the machining accuracy and productivity of small and miniaturized high precision moulds, such as components for electronic equipment, automobiles, and digital consumer electronics, among others. Various advanced technologies are implemented in this machine in order to achieve ultra-high precision machining in the range of 1μm.

Temperature Control

In micro EDM, changes in temperature impact the machining of high precision parts. Sodick’s AP30L will collectively manage all the ambient temperature changes and internal heat generation through the overall temperature control. It is capable of optimum high rigidity mechanical structure by CAE analysis, and built with a fully separate heat source structure integrated with ceramic components and machining-fluid for temperature control. This is the upgraded model of the die-sinker EDM, featuring a newly designed main body, tank, electric discharge power supply and NC unit. The comprehensive temperature control minimizes the effects from the temperature change in the installation environment and the heat generated during high-speed drive, which used to be an issue in high-precision machining.

In order to maintain extremely accurate positioning of the X, Y and Z axis, the machine is installed with Sodick’s in-house developed linear motor, which features high-speed axis motion and quick response, made possible by its ball screw-less design. Conventional drive systems use ball screws to convert the rotational motion of the motor into the linear motion of the axis stroke, leading to the unavoidable deterioration of the high-speed servo motors due to back-lash and mechanical lost motion. However, linear motors directly provide motion to each axis without converting rotational movements of the motor to linear motion. To achieve maximum performance with a linear motor, the K-SMC motor controller is also developed in-house, utilizing Sodick’s control know-how. The feedback from the spark gap is directly fed to the K-SMC board, allowing for instantaneous adaptation of the sparking conditions.

The machine is equipped with a newly developed carbon fibre reinforced polymer (CFRP) compact symmetrical head to achieve low weight and high rigidity. In addition to the fully separate heat source and precise cooling mechanism, a newly developed precise thermal displacement compensation system makes it possible to perform high-precision machining. The system also incorporates artificial intelligence (AI) technologies.

The system’s LP4 power supply NC unit, developed and manufactured in-house, has new discharge circuits and control that significantly improve machining speeds for all processes, from rough machining to finishing. The new Arc-less 4 EDM system offers stable, high-precision machining for all types of materials. The discharge state can be maintained steadily; but speeding up is possible. In addition, it realizes suppression of electrode consumption, achieves a wide variety of processed surface quality ranging from satin finish to mirror finish, and improves the overall performance of electric discharge machining.

 

Read more:

EDM: Past, Present and Future

Adapting Cutting Tools To Changing Trends

Hwacheon on VMCs vs. HMCs

3D Systems And GF Machining Solutions Expand Partnership

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

EDM: Past, Present And Future

EDM: Past, Present and Future

As the industry moves toward Industry 4.0, EDM machines are expected to become more intelligent as manufacturers incorporate more and more advanced functionality to enhance the productivity and efficiency of the system. Article by Makino.

The electrical discharge machining (EDM) process utilises short bursts or pulses of electrical energy to erode and machine conductive materials. This process can be thought of as machining with lightning bolts, called sparks. With EDM, the number and power of each spark can be precisely controlled, thus, by modifying the amount and power of the discharge spark energy, the material removal rate, attained surface finish and resulting accuracy can be predictably and repeatedly controlled.

While EDM is commonly thought of as a slower form of metal removal compared to conventional milling and some other processes, recent advancements in EDM technology have led to significant improvements in processing times and finish quality for even the most complex and involved part geometries.

But what has now become an essential process for die/mould shops, aerospace, automotive and other manufacturers humbly began with a failure.

Brief History of EDM

In the early 1940s, two scientists in the former Soviet Union, B.R. Butinzky and N.I. Lazarenko, experimented with methods to prevent erosion of tungsten contacts caused by electrical sparking during welding. Although they didn’t find a better welding method, they discovered how to control metal erosion by immersing the electrodes in oil or water. From their research, Butinzky and Lazarenko built the first electrical discharging machine for processing metals that were difficult to machine with conventional milling, drilling or other mechanical methods such as tool steel and titanium.

Butinzky and Lazarenko drew on ideas developed by English physicist, Joseph Priestley, who wrote about the erosive effects of electricity on certain metals back in the 1770s. The Russians’ early work became known as spark machining because electrical discharges caused sparks that could be controlled to manufacture specific shapes.

Machining with Electricity

In conventional machining, the material is removed by cutting tools that turn or grind against the workpiece with a mechanical force. In the EDM process, sparks of electricity create short bursts of high energy that instantly melt and vaporise the material without making contact. Due to the non-mechanical and non-contact machining process, EDM is referred to as a “non-traditional” type of manufacturing.

The key to EDM machining is the passage of electricity from a tool (electrode) to the workpiece, which must be composed of conductive material like steel or aluminium. The tool, which can either be a small diameter wire, hollow tube, or an electrode mechanically machined into a negative version of the workpiece’s final shape, is then placed and maintained in close proximity to the workpiece during the EDM spark erosion process.

EDM technology has evolved into three distinct machining approaches:

  1. Wire EDM: Wire EDM uses a small diameter copper or brass-alloy wire to cut parts much like a band saw. Traditional uses are to make punches, dies, and inserts from hard metals for die/mold tooling applications. Uses have since expanded to include part production uses over a wide array of industries.
  2. Sinker EDM: Sinker EDM uses electrodes machined from a special graphite or copper material into the shape or contour feature needed on the final workpiece. Typically, uses include the production of small or complex cavities and forms for die/mould tooling, but have also found use in many production applications.
  3. EDM Drilling: EDM drilling uses a small diameter hollow tube electrode made from copper or brass alloys to erode holes into the workpiece. This method is typically used to prepare start holes for the wire EDM process, but have also progressed to producing small hole features found in dedicated production applications such as turbine engine components and medical devices.

Why Use EDM

One of the key advantages in EDMing is the machine’s capability to work on small corners that cannot be cleared by the milling process. Also, when it comes to precision parts, very small work pieces are prone to damage when machined with conventional cutting tools because of the excess cutting pressure. You won’t have this issue with EDM.

With conventional cutting, extremely hard materials will affect the high wear rate of the cutter. This is not the case for EDM. In fact, apart from cutting these hard pieces of materials, the EDM process also provide excellent surface finishes.

Moreover, EDM enables the processing of complex shapes that would otherwise be difficult to produce with conventional cutting tools.

Over the years, many new machine technologies have helped improve the performance of EDM systems, enabling higher cutting speeds to produce parts faster than before.

One example of the latest technologies in EDM is Makino’s U6 H.E.A.T. Extreme wire EDM, which features an industry first 0.4mm (0.016”) coated wire technology that increases rough machining rates up to 300 percent compared to traditional 0.010” brass wire, while maintaining comparable wire consumption rates of 0.6–0.7lbs/hour. As a result, the new machine is able to significantly improve rough machining speed without increasing manufacturing costs.

Addressing the Labour Skills Challenge

Despite the advancements in EDM, there continues to be challenges facing the segment. One issue is labour, in particular, the lack of skilled EDM operators.

As new technologies are being incorporated in EDM, the need for programming skills, and the setting up and operation of more complex machines with more and more functionality are increasing. This, in turn, requires more knowledge and skills needed for ordinary operators.

One way of addressing this is the introduction of Industrial Internet of Things (IIoT) applications for EDMs to reduce the otherwise long learning curve required by the system, enhance user experience and efficiency, and reduce machine downtime.

Makino’s expanded Hyper-i Control family and Remote Monitoring features intuitive, intelligent, and interactive functions that utilise familiar smartphone/tablet functionality that provide operators with a powerful and user-friendly interface.

Its unified control system for both wire and sinker EDM machines provides operators with enhanced functions to improve productivity, regardless of operator skill level. The large 24” class HD touch-screen display provides a commanding view for the operator and utilises intuitive and familiar touch Pinch/Swipe/Drag operations similar to smartphones and tablets.

Straightforward machine operation is accomplished on the Hyper-i Control with a three-step process of Program/Setup/Run flow, and there are many helpful intelligent tools and functions for the operator that provide greater convenience and flexibility, such as the standard full-function advanced Handbox. In addition, digital onboard electronic manuals, instructional training videos, and the advanced E-Tech Doctor help functions provide the operator with practical resources at their fingertips to remain highly productive.

Another EDM technology from Makino is the HyperConnect application, which facilitates machine-to-machine connectivity. HyperConnect is a suite of IIoT applications for EDMs that enhances user experience and efficiency and reduces machine downtime. They are available on all Makino EDMs equipped with Hyper-i control systems. Some of the features of HyperConnect are as follows:

  • The app enables shop managers and operators to monitor and control EDM processes from any PC, smart device, or other Hyper-i control systems on the network. It has four primary connectivity features for shop personnel to monitor, plan, and troubleshoot EDM operations.
  • EDM Mail relays machine status information to operators via email during unattended operation to help reduce downtime and support multitasking abilities. It delivers periodic, timed interval updates of a machine’s operating conditions and alerts operators of a machine stoppage.
  • Machine Viewer is an application that permits networked access to the control’s NC operation screens, which allows operators to remotely view the machine control and process information from any office environment PC or enabled smart device.
  • Machine-to-Machine Viewer gives operators remote access to view and control a networked EDM from another machine, preventing unnecessary foot traffic across the shop floor.
  • PC Viewer provides operators with remote access to all software on a networked PC directly via the control and includes accessibility to any CAD/CAM software, specialized shop tracking software, and Microsoft Office applications.

Future of EDM

It’s been a long time since the discovery of EDM for metalworking. As the industry moves toward the fourth industrial revolution, EMD machines are expected to become more intelligent as manufacturers incorporate more and more advanced functionality to enhance the productivity and efficiency of the system.

One way “intelligence” is being added to the machine is through voice-enabled machine interaction. It is just like your iPhone’s Siri—but instead of asking for directions or calling a certain person in your address book, you are giving instructions to a machine regarding the processing or machining of a particular workpiece.

Makino is the first adopter of ATHENA, the first ever voice-operated assistant technology created specifically for manufacturing work. Developed by iTSpeeX, ATHENA is designed to enable operators of all skill levels by simplifying human interactions with industrial machines. For example, with one voice request, ATHENA can search through a machine’s maintenance manual and display the needed information right at the machine.

This will give operators more ease of control and will not just save time in training and onboarding new machinists, but also in giving experienced machinists the information they need when and where they need it.

 

Read more:

Metal Removal? There’s A Robot For That!

Improving Metal Cutting Productivity With A High-Powered Sawing Machine

Global Metal Cutting Tools Outlook

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

A Brief Review Of Electrochemical And Electrodischarge Machining

A Brief Review Of Electrochemical And Electrodischarge Machining

EDM and ECM processes are advanced manufacturing technologies with unique capabilities due to their non-mechanical material removal principles can be found in different areas of application in industry offering a better alternative or sometimes the only alternative in generating accurate 3D complex shaped macro, micro and nano features and components of difficult-to-machine materials.

Introduction

Electrochemical Machining (ECM) is a non-traditional machining (NTM) process belonging to Electrochemical category. ECM is opposite of electrochemical or galvanic coating or deposition process. Thus ECM can be thought of a controlled anodic dissolution at atomic level of the work piece that is electrically conductive by a shaped tool due to flow of high current at relatively low potential difference through an electrolyte which is quite often water based neutral salt solution.

On the other hand, Electrical Discharge Machining (EDM) is a controlled metal-removal process that is used to remove metal by means of electric spark erosion. In this process an electric spark is used as the cutting tool to cut (erode) the workpiece to produce the finished part to the desired shape.

Wire EDM beginnings in 1969, the Swiss firm Agie produced the world's first wire EDM.

Wire EDM beginnings in 1969, the Swiss firm Agie produced the world’s first wire EDM. Image Credit: Pinterest

Challenges Of Machining

The demand for macro- and micro- products and components of difficult-to–machine materials such as tool steel, carbides, super alloys and titanium alloys has been rapidly increasing in automotive, aerospace, electronics, optics, medical devices and communications industries. In spite of their exceptional properties, many of these difficult-to-machine materials seem to have limited applications. These materials pose many challenges to conventional machining processes (such as turning and milling).

For example, titanium alloys are susceptible to work hardening and its low thermal conductivity and higher chemical reactivity result in high cutting temperature and strong adhesion between the tool and work material leading to tool wear. Electrical Discharge Machining (EDM) and Electrochemical Machining (ECM) offer a better alternative or sometimes the only alternative in generating accurate 3D complex shaped features and components of these difficult –to- machine materials.

Advantages of ECM

One of the major advantages of ECM is the scalability of the process with the use of multiple electrodes on the same machining setup. ECM using multiple electrodes machined to machine arrays of micro holes results in increased productivity. Taper induced on the workpiece during ECM drilling is a major concern. Some of the tool designs for the reduction of taper include dual pole tools, insulated tools, and tools with shaped ends.

High conductivity, heat resistance and high melting point are the main desired properties for an EDM tool. The most common materials used in EDM tooling are copper, graphite, tungsten and tungsten carbide. Research is being done on many new materials including composites for EDM tooling.

Typical as well as innovative examples of application for the most important areas of application – die and mold manufacturing, turbomachinery component manufacture, tooling and prototyping and medical engineering. In addition, combined and even hybrid EDM and ECM processes are known with superior overall process performance.

Electro-Chemical Machining (ECM) with up to four Axes.

Electro-Chemical Machining (ECM) with up to four Axes. Image Credit: Pinterest

In all areas of application, the final surface integrity defines the later part performance. Therefore, the machining processes have to be designed and executed in such a way that the specific operation demands are fully met by the remaining surface modifications of the machined part. From application point of view different manufacturing processes could only compete with each other when providing at least the same part functionality and therefore similar material modifications.

Summary

While EDM incorporates thermal energy dissipation, ECM purely relies on a chemical material removal principle. ECM and EDM technologies have been successfully adapted to produce macro, micro components with complex features and high aspect ratios for biomedical and other applications. These processes are also being attempted at the nano-scale.

Back To Top