skip to Main Content
Hyundai Motor Group Partners Grab To Accelerate EV Adoption In Southeast Asia

Hyundai Motor Group Partners Grab To Accelerate EV Adoption In Southeast Asia

Hyundai Motor Group and Grab Holdings Inc. (Grab) has announced an enhancement of their ongoing strategic partnership in mobility services. The next phase of the partnership will focus on accelerating EV adoption in Southeast Asia. The Group, including Hyundai Motor Company and Kia Corporation which are the Group’s affiliates, and Grab will further develop new pilots and initiatives that lower the barriers of entry for Grab driver and delivery-partners to adopt EVs, such as lowering the total cost of ownership and reducing range anxiety.

Survey results from initial EV pilot in Singapore found that high costs, lack of charging locations and long waiting times for charging are top barriers hindering Grab driver-partners from adopting EVs. Hence, the enhanced partnership will focus on addressing some of these barriers by piloting new EV business models such as leasing EVs with a battery-as-a-service model or car-as-a-service model, and EV financing. Both parties will also develop a joint EV roadmap to accelerate adoption in Southeast Asia. The pilot programs will start in 2021, beginning in Singapore, and expand to Indonesia and Vietnam.

As part of the roadmap development, the two parties will also conduct an EV feasibility study. The intent is to gain a deeper understanding into the gaps and barriers to wider EV ownership and adoption, then translating the findings from the study into practical ways to further develop the EV ecosystem. These insights will provide governments and ecosystem partners with ideas and best practices on how EV policies can be shaped to better address the day-to-day operational routines of ride-hailing drivers and delivery-partners. This comes at a critical time as last-mile logistics and deliveries continue to experience unprecedented growth, and EVs can play a huge role in reducing carbon emissions from vehicles.

In addition, in line with Hyundai Motor Group’s latest future strategy, both parties will explore collaboration in new business opportunities and technologies such as smart city solutions.

“Hyundai Motor Group and Grab were able to discover the possibility of EV businesses in Southeast Asia through our cooperation from 2018,” said Minsung Kim, Vice President of the Innovation Division at Hyundai Motor Group. “With Grab having the largest driver network in the region and Hyundai’s comprehensive mobility solutions, we are confident that together we can help to increase the adoption of EVs and ultimately reduce carbon emissions throughout the region. Beyond its on-going projects, the Group expects additional cooperation with Grab to be a key driver to lead the mobility market of the future in Southeast Asia.”

Russell Cohen, Group Managing Director of Operations, Grab, said: “While EVs are relatively nascent in Southeast Asia, Grab plans to play a vital role in working with partners and governments to accelerate EV adoption. As government EV policies and incentives are implemented and essential infrastructure like charging stations continue to be built, this partnership will provide insights and best practices on the usage of EVs as part of the day-to-day operations of driver and delivery-partners. For example, we’ve piloted ways to reduce driver-partners’ downtime by enabling them to swap their e-moped batteries at GrabKitchen while they wait to collect food orders. Successful EV adoption is a multi-stakeholder effort, particularly in Southeast Asia, and we’ll continue to leverage our technology and operational leadership to build a fleet for the future.”

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Rise In Demand For EVs To Reduce Carbon Footprint Creates Opportunities In Lithium-Ion Battery Packs Market

Rise In Demand For EVs To Reduce Carbon Footprint Creates Opportunities In Lithium-Ion Battery Packs Market

The emergence of lithium-ion batteries has been phenomenal. With the rising awareness about environmental conservation around the world, many individuals switched toward buying products or items that have a lower negative impact on the environment. As lithium-ion battery packs are used extensively in such products, the market will expand at a healthy CAGR of 11 percent across the forecast period of 2021-2031, to surpass a valuation of US$ 120.3 bn by 2031 according to a report by Transparency Market Research (TMR).

Lithium-ion battery packs are rechargeable batteries mainly used for electric vehicles and portable electronic items. These battery packs are eco-friendly alternatives to store energy and do not contain high levels of heavy metals that are harmful to the environment. All these aspects act as prominent growth generators for the lithium-ion battery packs market.

The demand for hybrid vehicles and electric vehicles has increased exponentially across various regions. The growing demand for these vehicles has led to an increase in the demand for lithium-ion battery packs, which will positively influence the growth of the global market for lithium-ion battery packs market.

Furthermore, government bodies of numerous countries are increasing their efforts to reduce carbon emissions across their regions. Various agreements such as the Paris Climate Agreement have been signed to speed up the process of decarbonisation. Densely populated countries like India are encouraging the production of electric vehicles through initiatives like Faster Adoption and Manufacturing of Hybrid and Electric Vehicles (FAME) and others. Thus, these factors are helping in increasing the growth opportunities across the lithium-ion battery packs market.

 

Check these articles out:

Electric Cars May Be Cheaper Than Petroleum Cars In Seven Years

Cobots Lead the Future Of The Global Industrial Robots Market

IDTechEx Report Reviews How Nickel Is Replacing Cobalt In Electric Vehicles

Shifting Gears: Addressing New Requirements In EV Manufacturing

How Is COVID-19 Impacting The Aircraft MRO Industry In SEA?

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

TRUMPF Commits To E-Mobility And Sustainable Battery Production

TRUMPF Commits To E-Mobility And Sustainable Battery Production

The TRUMPF Group’s corporate venture capital unit has acquired a minority stake in the US start-up Battery Resourcers. Headquartered in Worcester, Massachusetts, Battery Resourcers has developed an efficient and eco-friendly process for recycling lithium-ion batteries. Unlike conventional methods that start by breaking down batteries into their separate chemical components, this new approach directly synthesizes new battery-ready cathode active materials from spent lithium-ion cells.

“The new recycling process developed by Battery Resourcers enhances the sustainability of e-mobility. It keeps scarce resources available in the circular economy, cuts the cost of manufacturing new battery cells, and saves energy in the production process,” says Dieter Kraft, Managing Director of TRUMPF Venture. The new technology recovers 97 percent of the metals contained in the battery cell, reducing cathode cost by 35 percent which compares well to manufacturing a new cell from virgin material. It also reduces production emissions by around 32 percent and energy consumption by 13 percent.

Lithium-ion batteries lie at the heart of most of today’s commercial electric vehicles. They are made from materials such as lithium, nickel, manganese and cobalt, which are expensive to mine and, in some cases, unsustainable. This is why the industry is determined to find the most efficient way to recycle battery cells.

“Our aim is to establish a sustainable value chain for lithium-ion batteries. Our technology can recycle almost all the materials used in cell production – not just for the batteries used in e-mobility, but also for the kinds of smaller batteries found in consumer electronics as well as large, industrial storage batteries regardless of their Lithium-Ion-based chemistries,” says Mike O’Kronley, CEO Battery Resourcers. Conventional recycling options are based on complex processes that mechanically crush the battery cells and chemically separate the mix of materials into individual purified constituent elements such as nickel, cobalt, manganese and lithium. The new method developed by Battery Resourcers eliminates much of this chemical processing by allowing the material mix to be turned into new active cathode material without the separation step, still resetting all memory from previous applications.

“This is a field that will be vitally important in the future. By investing in Battery Resourcers’ promising technology, we’re reinforcing our commitment to e-mobility,” says Kraft. As a key provider of high-tech manufacturing equipment, TRUMPF already plays an important role in driving forward e-mobility. The company’s systems and machines are ideally designed for tasks such as cutting sheet-metal components for battery housings and foils, and TRUMPF lasers are the perfect choice for welding battery cells, electronic contacts and electric motors.

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Toyota Electrification Plans To Boost Presence In Asia-Pacific EV Market

Toyota Electrification Plans To Boost Presence In Asia-Pacific EV Market

Toyota is set to unveil the concept version of the first model in its new battery electric vehicle (BEV) series, the Toyota bZ4X, in Shanghai and establish a full line-up of EVs to reduce CO2 emissions with the aim of having 70 electrified models by 2025.

Following this news, Bakar Sadik Agwan, Senior Automotive Consulting Analyst at GlobalData, a leading data and analytics company, offers her view:

“Toyota presently has only 4 BEVs in its portfolio and the new launches will enhance its position in the Japan and global BEV market. Several global OEMs, including Toyota, presently do not have a strong BEV portfolio due to their strategic priorities, low volumes and profitability concerns with battery vehicles. But the EV scenario has changed rapidly and there are significant opportunities in EV space due to push from the regional governments, reduction in costs and the availability of wide-range of products.

In addition to global market, Toyota’s BEV portfolio expansion will help it to tap significant opportunities in its home market, Japan, which presently does not have attractive BEV offerings and is witnessing high growth in demand for BEVs from select players such as Nissan and Tesla. Nissan’s Leaf is the only popular and successful BEV available for the mass market in Japan. While Tesla caters to the premium segment with sales of nearly 2,000 units annually.

In the recent past, Asia-Pacific has witnessed major developments in the EV market. Players such as Hyundai are trying to lead with innovative products and standout features while technology companies such as Huawei, Sony and Xiaomi are trying to penetrate the BEV market. The market is getting fiercely competitive day by day and automakers need to respond with suitable products to make their future sustainable.”

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Hyundai Motor And Singtel Collaborate To Advance Singapore’s Smart Mobility Ecosystem And Industry 4.0 Journey

Hyundai Motor And Singtel Collaborate To Advance Singapore’s Smart Mobility Ecosystem And Industry 4.0 Journey

Hyundai Motor Company and Singtel has signed a Memorandum of Understanding (MOU) to collaborate on a range of ventures to support smart manufacturing, connectivity for electric vehicle battery subscription service. The MOU follows Hyundai Motor Group’s announcement in October 2020 that it is setting up a new state-of-the-art Hyundai Motor Group Innovation Centre Singapore (HMGICS) to conduct studies on future mobility and explore innovative solutions, services and disruptive technologies to revolutionise commuters’ transport experience.

Hyundai Motor will combine its expertise in developing innovative automotive and manufacturing solutions with Singtel’s capabilities in 5G, Internet of Things (IoT), and next generation info-communications technologies and solutions to develop Industry 4.0 advanced digital solutions to   transform the way vehicles are currently manufactured. The parties will develop and pilot a 5G-enabled smart factory use case for HMGICS’ intelligent manufacturing platform, and potentially scaling it up for deployment across Hyundai’s manufacturing plants globally.

“Hyundai is delighted to work with Singtel, implementing next-generation communication solutions that will enhance mobility experiences for our customers,” said Hong Bum Jung, Senior Vice President of HMGICS at Hyundai Motor Company. “We also hope to explore future innovative solutions and business opportunities with Singtel to help realise Singapore’s Smart Nation vision.”

Hyundai and Singtel will also work together on an IoT communications solution for the batteries powering Hyundai’s electric vehicles (EVs) in Singapore. The IoT system enables Hyundai to monitor the telemetry, or automatic data transmission, of the batteries’ real-time status and performance. The data-driven insights can enhance the EVs’ reliability, advancing Singapore’s EV ecosystem and Smart Nation vision of connected and sustainable mobility solutions.

Andrew Lim, Managing Director, Government and Large Enterprise, Group Enterprise at Singtel said, “Our collaboration with Hyundai Motor is timely given the Singapore Government’s decision to phase out internal combustion engine vehicles by 2040 and the recent Budget announcement on new policies to encourage more Singaporeans to switch to driving electric vehicles. By pushing the boundaries of what is possible with 5G, IoT and other advanced technologies, we also want to build up Singapore’s smart manufacturing and Industry 4.0 capabilities and strengthen its innovation ecosystem.”

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Germany’s First Electric Car Factory Sets New Standards

Germany’s First Electric Car Factory Sets New Standards

The world’s largest car manufacturer is getting ready for the future. Over the next few years, Volkswagen will make a radical transition to e-mobility, and the Volkswagen plant in Zwickau, Germany, will play a key role in this process. With the ID.3 model, the blueprint for the new generation of electric cars is being created here. And the bending experts from Bystronic are also on board. Article by Stefan Jermann, Bystronic.

Much of what happens in the automotive industry goes on behind closed doors. This includes the realignment of the manufacturers towards e-mobility. But when German Chancellor Angela Merkel herself fires the starting signal for the production of the new Volkswagen ID.3, everything is already very much in the open. This was the case in Zwickau, Germany, where the production lines for what could be the most ambitious current project in the entire automotive industry kicked into motion.

The ID.3 is more than just a new model; this new electric car embodies the future of Volkswagen and is intended to usher in a new era. The group has set itself the objective of becoming the leading global manufacturer of e-vehicles. And this mission is being pursued with a vengeance. With investments of €1.2 billion, Volkswagen wants to turn Zwickau into the home of Europe’s largest e-mobility factory. This year, more than 330,000 electric cars are scheduled to roll off the production line—a total of six models from the Volkswagen, Audi, and Seat brands.

Platform for the Whole Family

So far, sales of electric cars have been sluggish. The ID.3 is designed to change this—thanks to an attractive price of below €30,000, rapid charging capability, and a range of up to 550km. Jürgen Stackmann, a member of the Board of Management of the Volkswagen Passenger Cars brand, promises, “The size of a Golf on the outside, the space of a Passat on the inside, and the acceleration of a GTI.” 

The ID.3, the first model in the ID. family, forms the basis for a zero-emission generation of vehicles. The modular electric drive matrix—MEB for short—offers the necessary scalability from the compact car to the bus. By 2022, it will be incorporated in 27 models of four Group brands. The “ID.R Pikes Peak” prototype has already proven that the sky is the limit. On June 24, 2018, at the mountain race in the United States bearing the same name, the supercar with its 680-horsepower electric four-wheel drive made motor racing history and beat the previous record set by rally legend Sebastien Loeb by a large margin. This sports car will remain a racetrack dream, but it shows in an impressive way what the ID family can achieve.

76-second Cycle Time

Kati Langer stands in Production Hall No. 12. She is inspecting the Xpert 40, which is connected to two Kuka robots in a production cell. The passionate Bystronic saleswoman, who has accompanied the ID.3 project with Volkswagen from the outset, is proud of the system. In order to seamlessly integrate the bending systems into Volkswagen’s workflows, we had to overcome a number of structural challenges,” she explains while we watch the two bending robots at work. 

The first robot removes the part from the container station and deposits it on the centring system. The second robot picks it up, swiftly feeds it to the bending machine, and performs the first of two bending steps. Then it returns the part to the centring system and the first robot completes the remaining bending steps. Subsequently, a stationary system welds two ball nuts to the part. The gripper then picks up the part and places it on the conveyor belt. 

The entire process takes exactly 76 sec. Watching the robots perform their bending sequences is a genuine delight. If you hadn’t seen it with your own eyes, you would hardly believe how elegantly and nimbly the two robots work hand in hand—or rather, gripper in gripper. Subsequently, the bent part is installed in the support structure of the chassis where it stabilizes the undercarriage. A second fully-automatic bending cell manufactures a component that is installed at the front of the car chassis.

To continue reading this article, head on over to our Ebook!

 

Check these articles out:

Bending in the Smartphone Era

Tornos To Hold Intelligent Manufacturing Conference

How 3D Printed Titanium Motor Nodes Became A Game-Changer In E-Bikes

Honda Shuts Automobile Production In Philippines

Shifting Gears: Addressing New Requirements In EV Manufacturing

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Shifting Gears: Addressing New Requirements In EV Manufacturing

Shifting Gears: Addressing New Requirements In EV Manufacturing

Andy Kuklinski of Ceratizit talks about the electric vehicle trend in the automotive industry, how it has changed the machining landscape, and the new requirements being faced by manufacturers. Article by Stephen Las Marias.

Andy Kuklinski

The Ceratizit Group develops and produces highly specialised cutting tools, indexable inserts, rods made from hard materials, and wear parts. Active in more than 80 countries worldwide, the Group has more than 8,000 employees and over 30 production sites. Its innovative hard material solutions are used in various sectors, including mechanical engineering and toolmaking, wood and stone working, in the automotive and aerospace industries, and in the oil, gas and medical industries.

In an interview with Asia Pacific Metalworking Equipment News, Andy Kuklinski, Head of Segment Automotive/Team Cutting Tools at Ceratizit, talks about the electric vehicle trend in the automotive industry, how it has changed the machining landscape, and the new requirements being faced by manufacturers.

HOW HAVE THE REQUIREMENTS IN ELECTRIC VEHICLES (EVs) CHANGED THE AUTOMOTIVE MANUFACTURING LANDSCAPE?

Andy Kuklinski (AK): One of the changes is that even more components will be made of aluminium. This will affect and change the manufacturing and supplier strategy. A typical example are cylinder heads and cylinder blocks. While these parts used to be manufactured mainly by the OEMs themselves, the focus is now moving to Tier 1 and even Tier 2 suppliers for the machining of the electric engine casing. We are increasingly seeing former aluminium foundries now responding and manufacturing the finished machined part in the same production facility. So, the landscape, especially the supply chain landscape, will definitely look different towards EV manufacturing.

WHAT KEY CHALLENGES HAVE YOU BEEN HEARING FROM YOUR AUTOMOTIVE CUSTOMERS WHO ARE TRANSITIONING TO EV?

AK: We are in constant exchange with our customers and hear again and again how challenging it is to react to the enormous and rapid changes in automotive components. In particular, the R&D and production planning departments are under great time pressure to meet the massively increasing demand for EVs. By supporting them quickly with the right machining concepts, we can mitigate at least some of this pressure.

HOW DO THESE CHALLENGES DIFFER FROM THE TRADITIONAL INTERNAL COMBUSTION ENGINE VEHICLES?

AK: For one thing, the time pressure was much less with the combustion vehicles, since it was not necessary to renew large parts of the portfolio in a short period of time. The product cycles were very finely tuned. For another, the parts that are being created now, especially in the powertrain area, are completely different from the parts that car companies produced in the past—many things are still new and simply bring new challenges. Previous combustion engines were always developed in a similar way and always had the same contours and materials that people knew how to process. In many respects, it was a constant process of optimisation.

HOW ARE THESE CHALLENGES IMPACTING YOUR TECHNOLOGY/PRODUCT DEVELOPMENT STRATEGIES?

To continue reading this article, head on over to our Ebook!

 

Check these articles out:

Automotive, Electrical/Electronics Industries Driving Global Industrial Robotics Market

A Look At Global Powertrain Key Technologies And Trends by Region

IDTechEx Report Reviews How Nickel Is Replacing Cobalt In Electric Vehicles

3D Printing Solutions for the Automotive Industry

Electric Cars May Be Cheaper Than Petroleum Cars In Seven Years

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Operating In The Single-Digit Micron Range

Operating in the Single-Digit Micron Range

Peter Mösle of Blum-Novotest talks about the trends happening in the automotive manufacturing industry, and how the company has kept up with manufacturers’ new requirements.

Peter Mösle, Head of Sales of the Measuring Machines business division at Blum-Novotest, spoke about current challenges around post-process measuring technology and the structural changes in the automotive and supplier industry.

BLUM-NOVOTEST HAS BEEN MANUFACTURING POST-PROCESS MEASURING MACHINES FOR THE AUTOMOTIVE INDUSTRY SINCE 1983. HOW HAVE THE MARKET REQUIREMENTS CHANGED SINCE THEN?

Peter Mösle (PM): Our measuring machines are part of the production lines, so changes in the machining centres often impact our area of responsibility directly. In particular, the continuous reduction in cycle times, but also the ever-decreasing tolerances are challenges that we must solve. Where workshop drawings previously specified tenths or at most a few hundredths of a millimetre, today’s requirements are in the single-digit micron range. Another key aspect is repeatability, which means the ability to investigate the fifth or 5,000th workpiece in a reproducible manner. 

Ultimately, all these measured results must also be doc

umented with a link to the workpiece. Alongside these technical requirements, there is the need for high flexibility in terms of type diversity as well as a long and functionally reliable service life—all at the lowest possible purchase price. The advent of electric mobility means that the deck is being reshuffled.

HOW DOES ELECTRIC MOBILITY INFLUENCE THE REQUIREMENTS PLACED ON YOUR POST-PROCESS MEASURING MACHINES?

PM: Electric mobility generally results in a substantially lower number of parts. Whereas combustion engines can consist of 1,200 to 2,500 individual parts, electric drives frequently require roughly a mere 10 percent of this number.

Camshafts are a good example of this change. In recent years, they were developed from forged or turned components into what are called “assembled shafts”. With electric mobility, the shaft is retained as part of the rotor—without the cams but with other ultra-high-precision features that must be tested and evaluated. Even our most frequently delivered machines—brake disc measuring machines—must cater to changing requirements. As a consequence of the development of these components, we are confronted with innovative material combinations, coatings, or evaluation features, for which we have already delivered customer-specific solutions to expand our modular machine concepts.

To continue reading this article, head on over to our Ebook!

 

Check these articles out:

Join Bruker Alicona Webinar: Form And Roughness Measurement With One System

The Importance of Automation for Networked Manufacturing and Digitisation

Modular Power Package For Demanding Benders

Hyundai Motor To Establish A Smart Mobility Innovation Centre In Singapore

Meeting the Need for Speed

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

The Challenges And Opportunities In EV Manufacturing

The Challenges and Opportunities in EV Manufacturing

Xiaoyu Wang of ANCA discusses the new challenges in electric vehicle (EV) manufacturing, how EVs will impact the traditional automotive manufacturing industry, and the new opportunities in this global trend.

Xiaoyu Wang

Founded in the 1974 by two engineers, Pat Boland and Pat McCluskey, in Melbourne, Australia, ANCA has become an industry leader for CNC tool and cutter grinding machines, motion controls and sheet metal solutions. Known for its cutting edge technologies and continuous innovation, ANCA’s comprehensive product line includes the FX, MX and TX series CNC machines, as well as its latest integration and automation solutions with the ANCA Integrated Manufacturing System (AIMS). ANCA sells to a wide range of industries including aerospace, medical, automotive, electronics and tool manufacturers. 

The company’s growth over the past 45-plus years has been driven by a series of innovations that have revolutionised the production of cutting tools and have impacted the whole of manufacturing. Due to the niche market that ANCA services, it exports 99% of its products with customers in over 45 countries. It has offices in the UK, Germany, China, Thailand, India, Japan, Brazil, and the United States, as well as a comprehensive network of representatives and agents worldwide. 

In this interview with Asia Pacific Metalworking Equipment News (APMEN), Xiaoyu Wang, ANCA’s Product Manager for Gear Tool, discussed the new challenges presented by electric vehicle (EV) manufacturing, how EVs will impact the traditional automotive manufacturing industry, and the new opportunities in this global trend. 

HOW HAS THE TREND TOWARD ELECTRIC VEHICLE (EV) PRODUCTION CHANGED THE AUTOMOTIVE MANUFACTURING LANDSCAPE AND WHAT ARE THE NEW CHALLENGES FOR MANUFACTURERS?

Xiaoyu Wang (XW): From a CNC tool and cutter supplier’s point of view, EV’s growth in the market is a challenge as well as a revolutionary opportunity. In 2017, 11.8 percent of cutting tool consumption was for automotive manufacturing. However, the rise of EVs and the associated manufacturing changes will significantly impact this. The machining time required for pure EVs will reduce by 50–75 percent compared with traditional internal combustion engines (ICEs). This will result in a decline in overall cutting tool consumption as ICE vehicles’ production stops. Recently, General Motors has pledged to stop making gasoline-powered vehicles by 2035.

Declining demand for cutting tools is an existential challenge, especially for our customers who serve the automotive industry. However, EVs also provide many opportunities. The new skiving cutters required for manufacturing  the internal gears used in EV transmission is a significant one.

About 45 percent of all gear production is for vehicle transmission. EVs have changed the requirements for the gear industry. For example, the high engine speed of up to 20,000 rpm means a higher gear ratio is required to reduce the speed for efficiency. Additionally, the planetary gear system is more prevalent in the new electric transmission design.

In a planetary gear set, the external gears need to be ground, for which the current production process of hobbing and then grinding can easily accommodate. The problem is with the internal ring gear. Traditionally, the internal gears are produced with shaping or broaching; however shaping is slow while broaching relies on cumbersome tooling. 

Efficiency poses multiple challenges, and EVs noise emission is also of a much higher priority for customers. Some drivers complain that an EV leaves a high pitch ringing in the ear even after driving.  This means gears for EVs need to meet even tighter tolerances. As such the quality requirement has increased from DIN 10 to DIN 6 for the internal gears. The gear industry sees hard skiving as a revolutionary process to produce the millions’ internal ring gears needed for EVs.

To continue reading this article, head on over to our Ebook!

 

Check these articles out:

Thailand’s Roadmap To Become The Regional EV Hub By 2025

Sheet Metal Fabricator Cuts Inspection Time by 60%

Thailand Sets Sight on Industry 4.0

ICYMI—2020 Rewind

FARO Sees Bright Prospects in Automotive Manufacturing Industry

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Laser Applications In The Production Of Li-Ion Battery Cells And Packs

Laser Applications in the Production of Li-Ion Battery Cells and Packs

The laser is at the center of many solutions when it comes to the global e-mobility trend. Here are a few examples of laser cutting applications in battery cell manufacturing and assembly. Article by Trumpf.

The worldwide mobility transition is in full swing. The demand for components for electric cars and alternative drives is rising continually. In particular, high-performance components directly involved in the production of batteries, electric motors and power electronics for electromobility are at the center. More and more companies, predominately automotive suppliers, are also demanding new manufacturing solutions and technologies for alternative drive concepts, including the fuel cell.

The laser is at the center of many solutions. It connects battery cells into modules or packs. It ensures tightness and crash safety when joining battery packs and trays. It scores highly thanks to its green wavelength when copper welding contact parts without spatter. And it provides high-tensile connections in e-drives, which withstand the highly dynamic requirements.

Manufacturing Battery Cells

Battery cell manufacturing is subdivided into electrode manufacturing and cell assembly. Electrode manufacturing requires a high variety of different process steps: mixing of the slurry, coating, drying, calendaring as well as shaping, folding and stacking of the coated electrode foil. Some of them required laser technology:

  • Micro structuring of the electrode surface with ultra-short pulse lasers, for example, reduces subsequently the charging time of battery cells.
  • Drying of electrodes with VCSEL laser technology to complement conventional drying ovens by reducing the footprint and increase efficiency.
  • Cutting and shaping of coated electrode foils with ns lasers into the required format, increasing quality and productivity. Common foil materials are aluminium (cathode) with a 5-14 µm thickness as well as copper (anode) with a thickness of 9-13 µm. Very often, these foils are coated. Cutting these foils with TruFiber laser sources enables burrs of less than 5 µm and HAZ of less than 40µm. 

In the cell assembly, the steps are contacting, packaging, formation, and aging. Laser technology is used here mainly in welding applications for the internal contacting of battery cell components and the closing of prismatic cell formats:

  • Green laser wavelength for the very defined and repeatable welding of copper materials.
  • High power IR lasers combined with Trumpf’s BrightLineWeld technology for spatter free welding of aluminium or copper materials.

Both laser applications enable the highest mechanical strength and lowest electrical resistance in welding of ≤100 foils together to a stack.

On the cell level, besides these different welding applications, there are also some upcoming laser applications for surface processing like cleaning, de-coating or micro structuring with short or ultra-short pulse lasers.

Process stability is a key factor in the battery cell production. Therefore, all these laser technologies have a direct impact on the efficiency and performance of the battery.

Battery Module Assembly

After the battery cell manufacturing process, the single cells will be assembled to a battery module. The electronics and battery pack assembly have an enormous variance of different module designs. But all are based on prismatic, pouch or cylindrical cell formats.

Laser technology is used in welding of busbars, meaning the electrical contacting of single cells to a battery module, or other current carrying components. Due to the enormous number of different designs, material combinations and thicknesses, the full TRUMPF laser portfolio in terms of power, wavelength, beam quality is applied.

  • Especially for thicker aluminium busbars with welding depths mostly >2 mm and welding speeds of minimum 100 mm per second, the TruDisk laser series with patented beam shaping technology BrightLineWeld is the best choice since every single weld must be exactly the same and spatter projections must be avoided.
  • For the welding of dissimilar material combination like Al/Cu or Al/steal, we mostly recommend single mode IR lasers with a very high beam quality e.g. you can use the TruFiber Series for such applications. These lasers create a very small intermetallic phase in the welding seam, which is important for a strong joint of materials with quite different melting temperatures. By using different welding patterns, you can join Al with Cu or even the other way around. Typically, by oscillating the laser beam with a scanner optic to increase the cross-section area. For the contacting of cylindrical cells, the sheet thicknesses are usually in the range 0.2 – 0.5mm, and many times dissimilar material combinations or with coatings.

For most of the installations in battery and module manufacturing, TRUMPF lasers, optics and sensors are integrated in automated high-volume production lines, while its TruLaser Station and TruLaser Cell series are suitable in small- and medium-production volumes.

 

Check these articles out:

Laser Technology Improves Post-Process Measuring On Centreless Grinders

Fibre Laser or CO2 Laser—Which Will Prevail?

TRUMPF Reports Higher Sales, But Decline In Orders Received

Thailand BOI Introduces EV Package And Over 35 Billion Baht In Investments

SPI Lasers Appoints New CEO

Are Machining Centres Taking Over Jig Bore Work?

igus 3D Printing Service: Quick Delivery Of Lubrication-Free Components

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top