skip to Main Content
SCHUNK Launches Powerful 24V Grippers For Small Components

SCHUNK Launches Powerful 24V Grippers For Small Components

SCHUNK has launched a compact, mechatronic 24V gripper for small components, allowing flexible processes during a fast-paced pick and place operation. The SCHUNK EGB with IO-link, based on the tried-and-tested SCHUNK EGP, scores with a high speed and high gripping force, satisfies the IO-Link Class B Standard suitable for increased power consumption, and can be directly connected with an IO-Link Class B Master. Its gripper fingers can be freely positioned within every cycle, providing the highest level of flexibility.

Due to the gripper’s pre-positioning, the shortest cycle times can be ensured. As the gripping force can be adapted to the respective workpiece using software settings in four stages, handling scenarios with deformation-sensitive parts can also be achieved. Within the permissible finger length, both the gripping force and the gripping speed remain virtually constant over the entire stroke. The position of the gripper fingers is detectable using the integrated measuring system over the entire stroke, and no external sensors are required for monitoring.

On the other hand, intermediate positions or varying workpiece sizes can be monitored at any time. An integrated diagnosis tool permanently monitors the voltage, current, temperature, and condition of the gripper, and transmits errors automatically to the superior control system. If needs be, systems operators can also store maintenance intervals for the system on the tool. As the entire electronics of the SCHUNK EGP is space-saving in its interior, the gripper doesn’t take up any space at all in the control cabinet. Brushless servomotors and a clearance-free junction roller guide ensure a high level of efficiency, constant gripping forces across the entire finger length and make the SCHUNK EGP with IO-Link a dynamic, precise, and powerful expert for challenging handling of small and mid-sized parts.

Just like its predecessor the pneumatic SCHUNK MPG-plus, SCHUNK EGP takes screws on the side or at the base, increasing its flexibility within a system design. In order to increase the dynamics and the energy efficiency of higher-level systems, the gripper housing consists of a special high-performance aluminium. In addition, the design is rigorous in eliminating superfluous materials. It fulfils protection class IP30 and is suitable for the most various applications in the area of small component handling and assembly. SCHUNK EGP will initially be available in sizes 40, 60, and 64 with a finger stroke of 6/8/10mm, and maximum gripping forces of 140N/210N/300N. The repeat accuracy during the gripping operation amounts to 0.02mm, and during positioning of the gripper fingers, it amounts to 0.1mm to 0.2mm. However, this depends on the fact whether the finger position is reached from one or two directions. The gripper is suitable for handling parts up to 0.7kg/1.05kg/1.25kg. In addition to the version with IO-link, the 24V gripper is again available with actuation via digital I/O.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Key Factors To Consider When Selecting The Proper Gripper

Key Factors to Consider When Selecting the Proper Gripper

There are various operational characteristics that must be considered before an educated—and successful—gripper choice can be made. Article by Gary Labadie, Destaco.

In the world of manufacturing, the ability to consistently get—and maintain—a good, reliable grip can be the difference between operational success and failure. However, the engineers who design pick-and-place automation systems used in such diverse industries as automotive, electronics and consumer goods, often give inadequate attention to the most suitable type of gripper to use with their system. There’s a vast array of gripper styles available, and engineers are designing systems that can have thousands of parts. Often, convenience, familiarity or a generalised end-user specification contribute to a less-than-optimal decision.

There are many considerations that should be addressed when choosing a gripper. Among these are the effects that dirt, grit, oil, grease, cutting fluid, temperature variation, cleanliness and the level of human interaction can have on the operation of an automation system. It is not enough to arbitrarily choose a gripper from off the shelf or from the pages of a catalogue.

Know Your Operating Environment

Although there have been some advances made in the design and operation of electric grippers, pneumatic grippers have been the standard for many years and will continue to be the majority for the foreseeable future. In fact, more than 95 percent of the grippers in use in today’s automated manufacturing environment are pneumatically powered.

Pneumatically controlled grippers are generally used for three basic tasks: for gripping and holding a product or component while it is being transferred, for example, from or to a conveyor, workstation, machine; for part orientation, or putting the part or product in the correct position in preparation for the next process; and for gripping a part while work is actually being done. While these tasks would appear to be straightforward, their effective operation is only assured if the correct type of gripper is chosen for the operating conditions.

There are two common classes of operating environments that may require special attention:

Contaminated: Characterised by an environment with high levels of dirt, debris, oil, grease, or higher temperature variations. These environments are common in automotive, foundry, machining and general industrial applications.

Clean: In this type of environment, the focus is on keeping anything on or in the gripper from being released into the work environment and contaminating the part or process. This is common in the medical, pharmaceutical, electronics and food-production industries.

Whether operating in a clean or dirty arena, shielding can be an effective means of increasing reliability. Standard or custom-designed shields can deflect debris away from the internal workings in a dirty environment, or help to keep grease and internal containments contained in a clean one. Gripper materials and coatings such as stainless steel, nickel-plating and hard-coat anodizing can also keep surfaces from corroding or debris from sticking, which can eventually cause binding.

Gripper Design and Environmental Suitability

Basic gripper design and construction can also have an effect on the performance in any given operating environment. A gripper consists of three basic parts: body, jaws and fingers. Generally, the gripper manufacturer only designs and builds the gripper’s body and jaws, with the machine builder or end user supplying the custom fingers to grip or encapsulate the given part. When selecting a gripper, considerations for any application should include appropriate finger length, grip force, stroke, actuation time, and accuracy. The manufacturer normally publishes these specifications for any given gripper model and need to be followed.

Again, specific operating environments will play a significant role in determining which type of gripper design should be considered. The jaw-support mechanism (bearing type) can have an impact on function. The internal design (means of power transmission from piston to jaw) can have an impact, as well. Simply put, various grippers may be the same size and perform the same function, but can have completely different designs, with some being better than others for differing operating environments.

The mode of power transmission, or general design of the gripper mechanism, should also be contemplated. Some examples are double-sided wedge, direct drive, cam driven, and rack-and-pinion drive. There are also numerous finger designs and gripping methods to consider: friction, cradled, and encapsulated.

When considering finger design, safety should always be paramount. In the event of power failure (loss of air pressure), there are other means of preventing a part from accidentally being released from the gripper and potentially causing bodily injury or damage to part or machine. An internal spring may be an option to bias the piston and maintain finger/jaw position on or around the part, but care must be taken to ensure the spring force is adequate. External fail-safe valves can be added to the ports to check air to the gripper in the open or closed position. Some gripper styles allow for rod locks that automatically clamp on the guide rods of the jaws when air pressure is lost.

Conclusion

Designers and engineers who don’t give proper attention to gripper selection may eventually need to be told to ‘get a grip’ when considering their choices. This demand can rise when the performance of an automation system is compromised because the proper grippers were not chosen and unsatisfactory operation ensues.

The performance of any automated manufacturing system is only as strong and reliable as the performance of its weakest link. To ensure that the weak link is not the gripper, strict attention must be paid to the operating environment and a suitable gripper specified based on gripper design and the array of options available, including possible custom solutions the manufacturer may be willing to offer. Only when these areas are optimized will the operator truly know that the best gripper for the application has been selected.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Gripping And Clamping Solutions For Process Automation

Gripping and Clamping Solutions for Process Automation

In this interview with Asia Pacific Metalworking Equipment News (APMEN), Vincent Teo, general manager of Schunk, talks about the challenges that their customers are facing, and how they are helping them address these issues. Article by Stephen Las Marias.

Schunk is one of the leading providers of clamping technology and gripping systems worldwide. Founded in 1945 by Friedrich Schunk as a mechanical workshop, the company has grown to become what it is today under the leadership of his son, Heinz-Dieter Schunk. The company is now under the leadership of siblings Henrik A. Schunk and Kristina I. Schunk, the company founder’s grandchildren.

Schunk has more than 3,500 employees in nine production facilities and 34 subsidiaries as well as distribution partners in more than 50 countries. With more than 11,000 standard components, the company offers the world’s largest range of clamping technology and gripping systems from a single source. In particular, Schunk has 2,550 grippers—the broadest range of standard gripper components on the market—and its portfolio comprises more than 4,000 components.

Based in Singapore, Vincent Teo is the general manager of Schunk, where he is responsible for the Southeast Asia market, including Singapore, Indonesia, Thailand, Malaysia, Philippines, and Vietnam. In an interview with Asia Pacific Metalworking Equipment News (APMEN), Teo talks about the challenges that their customers are facing, and how they are helping them address these issues. He also talks about the trends shaping the clamping and gripping market, and his outlook for the industry.

APMEN: What is your company’s ‘sweet spot’?

Vincent Teo: Schunk understands the needs of manufacturing companies, which have assembly, handling and machining processes. Our products can apply in multiple manufacturing sectors.

APMEN: What sort of challenges are your customers facing?

Teo: Today, businesses face the challenge of getting skilled workers—and staff retention for many industries is becoming a struggle. This is even more severe for countries such as Singapore, which depends on foreign workers. If automation can help reduce these problems and improve work conditions, then more high-value jobs can be created.

APMEN: How is your company helping your customers address their problems?

Teo: We work together closely with our partners such as robot manufacturers and system integrators, and we aim to reach out to more customers to help them see the benefits of automation.

APMEN: What forces do you see driving the industry?

Teo: Collaborative robots, or cobots, have revolutionized many applications that were impossible to think of over a century ago. Less complicated programming equates to less man-hour training, making it cheaper for businesses to adopt robotics. This is game changer, and Schunk is working with the major players in this new era of robotics.

APMEN: What opportunities you are seeing in the Asia market for robotic clamping industry?

Teo: The trend towards automated loading on machining by robots is picking up in recent years. The company is well-positioned to support this growing demand with immediate solutions.

APMEN: What about the challenges in the region? How do you see the trade war between China and the US affecting the manufacturing industry?

Teo: There has been increased investments towards Asia. This is a good problem, where we see customers valuing more our solutions to help them to increase their productivity and capture more businesses.

APMEN: What are the latest developments in robotic clamping/gripping?

Teo: We constantly develop new products in anticipation of the needs of our customers. One example is our latest product, the VERO S NSE3 clamping module, which improves set-up time and has a repeatability accuracy of <0.005mm.

APMEN: How do you position yourself in this industry? What sets you and your solutions apart from the competition?

Teo: Schunk is a unique company, having clamping technology (CT) and gripping systems (GS) solutions. With more than 11,000 standard products, no other company has a comparable scale and size across the range of products. With integrated solutions for both, we provide our customers the best opportunity to automate their processes.

APMEN: What advice would you give your customers when it comes to choosing the correct robot clamping/gripping solution?

Teo: For the machining industry, some customers often invested in clamping solutions and realized later that they need to automate their processes. When they started to review, they will realize that their investments may not be future proof. This may further discourage them towards the automation idea. Our comprehensive CT products allow our customers to later upgrade with our GS products, as both offers seamless integration.

APMEN: The trend is toward smarter factories now, with the advent of Internet of Things (IoT), data analytics, etc. Where does Schunk come in in this environment?

Teo: Schunk sees the need to embrace new technologies. iTENDO, our intelligent hydraulic expansion toolholder for real-time process control, records the process directly on the tool, and transmits the data wirelessly to a receiving unit in the machine room for constant evaluation within the closed control loop. With iTENDO—the first intelligent toolholder on the market—Schunk is setting a milestone when it comes to digitalization in the metal cutting industry.

APMEN: What is your outlook for the robotic clamping/gripping industry in the next 12 to 18 months?

Teo: We understands our partners’ and customers’ needs. For gripping, we have come out recently with new products to address the growing demand for collaborative robot (cobots). For clamping, our latest NSE-A3 138 is specifically designed for automated machine loading. It has a pull down force up to 28kN with integrated bluff off function and media transfer units.

 

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

Schunk Investing €85 Million In Expansion Of Production Facilities

Schunk Investing €85 Million in Expansion of Production Facilities

Gripping systems and clamping technology provider Schunk is investing around €85 million in expanding its production facilities in Brackenheim-Hausen, Mengen, and St. Georgen in Germany, and in Morrisville, North Carolina, in the United States.

Around 42,000sqm of total production and administration space is being created, starting with the US plant, where the new buildings were officially handed over recently. In addition to the production area expansion, Schunk Intec USA created a 4,000sqm administrative building, which features a Customer Centre, where users can experience Schunk’s components live and receive additional know-how in technology forums and workshops. The new building was inaugurated in early May with an official ceremony followed by a Family Day. Schunk has invested a total of almost €10 million in the expansion of the site.

Meanwhile, €40 million are being put into the Competence Centre for Gripping Systems in Brackenheim-Hausen, Germany. The extension covers an area of 22,000sqm and represents a doubling of the existing production area.

Schunk is investing another €30 million in the Competence Centre for Lathe Chuck Technology and Stationary Clamping Systems in Mengen, in the district of Sigmaringen, Germany. Here, 12,000sqm are to be added for production and R&D.

Around €5 million were invested at the St. Georgen site in Black Forest, where the production area was doubled with an increase of 4,200sqm.

“In the coming years, we will experience a boom in automation and digitisation worldwide, and we’ll only be able to handle this by having the right capacities,” said CEO Henrik A. Schunk.

For several years, the company has been successfully focusing on these two trends and concentrating its resources and know-how. Schunk expects high growth rates, especially for mechatronic and increasingly intelligent clamping devices and gripping systems.

The company also recently announced its cooperation with AnotherBrain, one of the world’s leading specialists in artificial intelligence (AI).

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Outlook For Global Robot End-Effector Market

Outlook for Global Robot End-Effector Market

The robot end-effector market is expected to grow from US$2.6 billion in 2019 to US$45.7 billion by 2024, at a CAGR of 16.9 percent during the forecast period, according to research firm MarketsandMarkets, mainly due to the fast-changing nature of industries today.

For example, in the packaging segment, the shape, size, surface, or weight of the packaging is constantly changing, thereby shortening the lifecycle of an end-effector to one to two years, and thus increasing the cost of replacement for a company. Modular end-effectors have the capability to accommodate and handle a large variety of objects as required. Hence, the growing demand for modular end-effectors is one of the key factors driving market growth.

Until 2017, welding guns dominated the robot-effector market. However, from 2018 onward, grippers have the largest share owing to the growing popularity of electric grippers, collaborative grippers, soft grippers, and customised grippers. The report expects this trend to continue moving forward, mainly because of the fully programmable feature of the electric gripper. When programmed intelligently around the states of operation, they can reduce cycle time by a considerable amount. Because of their programmable nature, they can also be calibrated for the use of three fingers or more, and can be fitted with different fingertips.

The Asia-Pacific (APAC) region is expected to dominate the robot end-effector market during the forecast period, mainly driven by increasing investment in automation by the automotive, and electrical and electronics players, especially in countries such as China, South Korea, and India. The increasing adoption of collaborative modular robots by manufacturers has also elevated the demand for modular robotics in APAC.

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Schunk’s Universal Compensating Unit Enables Intuitive Bin-Picking

Schunk’s Universal Compensating Unit Enables Intuitive Bin-Picking

Schunk’s AGE-U universal compensating unit enables reliable gripping without having to first detect the exact position and location of the gripping object. Its complex design combines angled, lateral and rotary compensation and applies sensor detection once deflection takes place.

When bin picking, ferromagnetic blanks can be picked up by a magnetic gripper without having to detect their exact position or orientation. All that is needed is an approximate localisation, using equipment such as a simple 2D scanner. In addition, the module can compensate for tolerances and position deviations in six axes during automated assembly.

The AGE-U has combined rotation and angular compensation, allowing the end effector to fully adapt to the undefined component position or to feed through insertion operations with gripped components. In the X and Y directions, the maximum possible compensation is ±2.7mm. In the Z direction, it is ±6.1mm. Laterally, the compensation around the X axis and Y axis is at up to ±3 deg, rotationally, it is at up to ±8 deg around the Z axis. While the return to the basic position is achieved both via springs and actively via compressed air, the flexibility of the unit can be adjusted individually by regulating the air pressure. At a pressure of 6bar, the unit is switched to a completely rigid mode, eliminating uncontrolled movements during the handling system process. Both the locked status as well as the deflection of the unit from the basic position can be monitored via inductive monitoring of the locking piston.

The compensation module is recommended for handling weights up to 5kg and can be connected to a wide range of industrial and lightweight robots quickly and easily using the standardised ISO-50 flange without adapter plate. The housing made of anodised aluminium and the functional components made of hardened steel ensure a long service life and reliable operation with minimal maintenance costs. The Schunk AGE-U is designed for one million compensation cycles.

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Quick-Change System From Schunk Handles Weights Up To 50kg

Quick-Change System from Schunk Handles Weights Up To 50kg

Schunk GmbH & Co. KG has released a pneumatically actuated robot quick-change system that allows fast and process-reliable changing of different gripping systems and tools at the front end. With its four optional module attachment surfaces, the SCHUNK SWS-046 offers a wealth of options for supplying the connected pneumatic, hydraulic or electric effector. High-power modules, self-sealing fluid modules and servo modules are also available.

The SCHUNK SWS-046 features a large number of modules for connecting actuators and sensors electrically, such as for PROFIBUS, PROFINET, CAN, RS232 and EtherNet TCP/IP. These modules can be supplied with signals via examples such as mechatronic grippers or force/torque sensors.

The SWS-046 screw connection diagram corresponds to robot side ISO 9409-1-100-6-M8. Schunk also offers an optional centring collar plate with ISO flange pattern, so that the module can usually be used on most robots without the need for an additional adapter plate. The patented ‘no-touch locking-system’ facilitates a reliable tool change even if the head and the adapter are up to 2.5mm apart from one another.

In the event of an emergency stop or a sudden power failure, the patented self-retaining feature of the locking system ensures a process-reliable connection between the quick-change master and adapter. A piston stroke monitoring system that is also integrated can be used to monitor the locking state of the module at any time. The maximum permissible moment load is 678Nm (Mx, My) or 882Nm (Mz).

 

FOLLOW US ON: LinkedIn, Facebook, Twitter

READ MORE IN OUR LATEST ISSUE

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

 

 

Back To Top