fbpx skip to Main Content
Bending In The Smartphone Era

Bending in the Smartphone Era

How exactly do newer CNC press brakes create more parts than older mechanical or hydraulic press brakes? Find out in this article by Marcel Fiedler of Bystronic Inc.

Older controls required manual numerical programming.

Do you remember getting your first cellphone? What was the first thing you took out of the box and spent time with? It was probably the user manual. The cellphone was a new technology, and you needed time to understand and learn to use it. It wasn’t intuitive, and you absolutely needed that manual.

What happens when you get a new smartphone today? You unwrap the well-designed package, admire your shiny new device, turn it on, and get started. It’s probably already charged and just waiting for you to use it. That’s it. It doesn’t have any buttons or dials; the entire surface is a human-machine interface, or HMI. And it probably doesn’t have a manual. A pop-up notification shows you received a new message, and you just tap to see what it is. It’s intuitive.

Press brakes last much longer than cellphones, of course. That’s why in many job shops today you might find both mechanical and hydraulic press brakes with old controls. They can last 30 years or longer and still bend parts. Of course, just because a machine turns on does not mean it can produce parts efficiently. If you see less seasoned operators attempt to run the shop’s oldest brake, you’ll probably hear them say, “Does anybody know how to operate this machine?”

Learning and understanding bending theory is probably as challenging as learning to be a good welder. It takes time and patience to learn the differences between every machine. Those differences can be significant, especially in a bending department with both old and new equipment. They require different training strategies, all driven by technology that has literally changed how operators learn about sheet metal bending: the software and machine control.

The Pre-Smartphone Era

Imagine starting a new job as a press brake operator around the same time that you received your first cellphone, before the smartphone era. You spend most of the time going through the manual, guided by a veteran who knows the machine inside and out. You read the blueprint and adjust the machine settings as necessary. You learn how to adjust the position of each axis, determine where the backgauge needs to be, dial in the part, make other adjustments by typing nominal values into the controller, then run production until you need to switch over to the next part. Once you understand the basic concept of one machine, you walk to the next press brake and learn this process from the beginning again, with your experienced tutor and the manual right next to you.

You receive a printed blueprint, and you write the program at the machine control. You determine the material type and thickness, define your bend angle, then position your backgauges manually for each bend. If not provided on the print, backgauge positions are defined as an actual absolute value that needs to be calculated manually

.

Overall you spend 10 minutes (or longer) getting the press brake ready to make the first bend—and that old machine control gives you no indication of how to do this. By looking at the control alone, you don’t know which tools to pick or how to set them up. That’s why you need an experienced operator by your side. He knows the setups and best ways of doing it by memory. Still, even with all his knowledge and experience, he pays very close attention to his choices so he doesn’t make any mistakes. Setup is time-consuming, and the old machine control doesn’t give much if any assistance.

At some point, you’re on your own. You position the peripherals of the machine first so you know where to place the tools. What tools do you select for this job? You’d better have a quick guide or “little black book” close to the press brake to know which tools to pick.

The Smartphone Era

The control shows other relevant information, including raw material location, customer information, and due date.

Fast-forward to today. Imagine you just graduated from school and you’re now looking for your first real job in the sheet metal industry. Thing is, you aren’t on the shop floor with an experienced employee who has operated just one machine his entire career.

Instead, you’re in a classroom environment. You sit by a desktop PC with the press brake operating software installed. You don’t have a printed machine manual, and on some days you might not work with someone with decades of press brake experience, especially if they’re needed on the floor. But that’s not a problem—and here’s why.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Machine Tool Industry Propels Taiwan To Become World’s Second Largest Masks Manufacturer In Just 40 Days

Increasing Automation, Connectivity And Energy Efficiency In Metal Cutting

LVD Expands Electric-Drive Press Brake Portfolio

Six Factors That Have Changed Bending Automation

The Carefree Package For The Entry Into Bending

TRUMPF AI Assistant Optimises Sorting Process

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

ANCA Motion’s EtherCAT Pendant Offers Flexible Benefits With A User-Friendly And Intuitive Interface

ANCA Motion’s EtherCAT Pendant Offers Flexible Benefits With A User-Friendly And Intuitive Interface

Anca Motion: In factories, as with the world outside them, devices and machines are becoming simpler to use. A vital expectation nowadays is user-friendliness. The “user experience”-oriented smartphone era has seen industrial companies make their products and all their Human Machine Interfaces (HMIs) much more intuitive. The world is moving towards an era where robots can be taught on the fly by an assembly line worker rather than requiring hours of painstaking programming by the expert. Machine builders are designing their solutions and their HMIs so that these can be set up with minimum steps, and put to work by someone with minimal training.

READ: Five Ways To Enhance CNC Machine Manufacturing With The Cloud

One reason to provide user-friendly machinery is the workforce demographic shift on the horizon. In the USA, for example, a quarter of manufacturing workers were 55 and older in 2017. A recent survey from the US’s National Association of Manufacturers found nearly a half of respondents were “very concerned” about the brain drain caused by the expertise ageing out of their companies.

With fewer expert machinists around, products need to be simple to use – as well as safe – in the hands of a non-expert as well as an expert operator.

READ: ANCA Discusses Trends Driving the Cutting Tool Industry

ANCA Motion’s AMI 5000 remote pendant is a machine control interface with years of development and proven effectiveness behind it. It offers support for the EtherCAT fieldbus – almost unheard of among pendant manufacturers, and a massive benefit in quick integration with compatible systems. Interfacing with any host control system software that supports EtherCAT Fieldbus, the pendant is designed to connect and integrate with a machine in a few simple steps. EtherCAT also means a reduction in cable size and weight, thus improving manoeuvrability and portability.

Customisable options build on a proven track record of innovation and customer support

The remote pendant comes in a wear- and drop-resistant composite case, ideal for tough industrial environments. The front cover is customisable to match an OEM’s branding needs.

The AMI 5000 remote pendant is available in custom cable lengths from two metres to ten metres standard or spiralled, allowing a worker the flexibility to move around their machine. Magnet and cradle mounting also offers maximum flexibility. With localised firmware updates and local status indicators, these devices are simply plug-and-play, avoiding complex integration procedures.

READ: ANCA Motion’s Multi-Axis Servo System Conserves 96 Percent Of Energy Wastage

Safety and control are increased through dual-channel Emergency Stop and optional Hold to Run button. The unit’s MPG (manual pulse generator) feed also offers precision control. This allows for precise movement along various axes – ideal for making small, incremental changes which provides great flexibility when testing new part programs.

The pendant uses an 18-pin circular connector, 24-Volt DC input, and communicates at 100 Mbps.

With thousands of existing units and support through ANCA’s global network of offices, any issue can be resolved as quickly as possible.

Written by ANCA Motion Automation Product Manager, Elan Anbanandam

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Five Ways To Enhance CNC Machine Manufacturing With The Cloud

HEIDENHAIN Presents Controls And Measuring Technology For Efficient Production

Marposs Supports The DIGIMAN Project

Bystronic Releases Entry Level Solution For Bending

Creaform Launches 3D Scanning Solution Suite for the Aerospace Industry

Embedded Motion Control

Hypertherm Intros Subscription Pricing Model for ProNest LT Nesting Software

Ensuring That A Propeller Keeps A Heart Beating

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

Gartner Forecasts Seven Future Digital Disruptions

Gartner Forecasts Seven Future Digital Disruptions

Gartner, Inc. has revealed seven digital disruptions that organisations may not be prepared for and which CIOs may not foresee coming. These include several categories of disruption, each of which represents a significant potential for new disruptive companies and business models to emerge.

“The single largest challenge facing enterprises and technology providers today is digital disruption,” said Daryl Plummer, Vice President and Gartner Fellow. “The virtual nature of digital disruptions makes them much more difficult to deal with than past technology-triggered disruptions. CIOs must work with their business peers to pre-empt digital disruption by becoming experts at recognising, prioritising and responding to early indicators.”

Quantum Computing

Quantum computing (QC) is a type of nonclassical computing that is based on the quantum state of subatomic particles. Classic computers operate using binary bits where the bit is either 0 or 1, true or false, positive or negative. However, in QC, the bit is referred to as a quantum bit or qubit. Unlike the strictly binary bits of classic computing, qubits can represent 1 or 0 or a superposition of both partly 0 and partly 1 at the same time.

Superposition is what gives quantum computers speed and parallelism, meaning that these computers could theoretically work on millions of computations at once. Further, qubits can be linked with other qubits in a process called entanglement. When combined with superposition, quantum computers could process a massive number of possible outcomes at the same time.

“Today’s data scientists, focused on machine learning (ML), artificial intelligence (AI) and data and analytics, simply cannot address some difficult and complex problems because of the compute limitations of classic computer architectures. Some of these problems could take today’s fastest supercomputers months or even years to run through a series of permutations, making it impractical to attempt,” said Mr. Plummer. “Quantum computers have the potential to run massive amounts of calculations in parallel in seconds. This potential for compute acceleration, as well as the ability to address difficult and complex problems, is what is driving so much interest from CEOs and CIOs in a variety of industries. But we must always be conscious of the hype surrounding the quantum computing model. QC is good for a specific set of problem solutions, not all general-purpose computing.”

Real-Time Language Translation

Real-time language translation could, in effect, fundamentally change communication across the globe. Devices such as translation earbuds and voice and text translation services can perform translation in real-time, breaking down language barriers with friends, family, clients and colleagues. This technology could not only disrupt intercultural language barriers, but also language translators as this role may no longer be needed.

“To prepare for this disruption, CIOs should equip employees in international jobs with experimental real-time translators to pilot streamlined communication,” said Mr. Plummer. “This will help establish multilingual disciplines to help employees work more effectively across languages.”

Nanotechnology

Nanotechnology is science, engineering and technology conducted at the nanoscale — 1 to 100 nanometers. The implications of this technology is that the creation of solutions involve individual atoms and molecules. Nanotech is used to create new effects in materials science, such as self-healing materials. Applications in medicine, electronics, security and manufacturing herald a world of small solutions that fill in the gaps in the macroverse in which we live.

“Nanotechnology is rapidly becoming as common a concept as many others, and yet still remains sparsely understood in its impact to the world at large,” said Mr. Plummer. “When we consider applications that begin to allow things like 3D printing at nanoscale, then it becomes possible to advance the cause of printed organic materials and even human tissue that is generated from individual stem cells. 3D bioprinting has shown promise and nanotech is helping deliver on it.”

Swarm Intelligence

Digital business will stretch conventional management methods past the breaking point. The enterprise will need to make decisions in real time about unpredictable events, based on information from many different sources (such as Internet of Things [IoT] devices) beyond the organization’s control. Humans move too slowly, stand-alone smart machines cost too much, and hyperscale architectures cannot deal with the variability. Swarm intelligence could tackle the mission at a low cost.

Swarm intelligence is the collective behavior of decentralised, self-organised systems, natural or artificial. A swarm consists of small computing elements (either physical entities or software agents) that follow simple rules for coordinating their activities. Such elements can be replicated quickly and inexpensively. Thus, a swarm can be scaled up and down easily as needs change. CIOs should start exploring the concept to scale management, especially in digital business scenarios.

Human-Machine Interfaces

Human-machine interface (HMI) offers solutions providers the opportunity to differentiate with innovative, multimodal experiences. In addition, people living with disabilities benefit from HMIs that are being adapted to their needs, including some already in use within organizations of all types. Technology will give some of these people “superabilities,” spurring people without disabilities to also employ the technology to keep up.

For example, electromyography (EMG) wearables allow current users who would be unable to do so otherwise to use smartphones and computers through the use of sensors that measure muscle activity. Muscular contraction generates electrical signals that can be measured from the skin surface. Sensors may be placed on a single part or multiple parts of the body, as appropriate to the individual. The gestures are in turn interpreted by a HMI linked to another device, such as a PC or smartphone. Wearable devices using myoelectric signals have already hit the consumer market and will continue migrating to devices intended for people with disabilities.

Software Distribution Revolution

Software procurement and acquisition is undergoing a fundamental shift. The way in which software is located, bought and updated is now in the province of the software distribution marketplace. With the continued growth of cloud platforms from Amazon Web Services (AWS), Microsoft, Google, IBM and others, as well as the ever-increasing introduction of cloud-oriented products and services, the role of marketplaces for selling and buying is gathering steam. The cloud platform providers realise (to varying degrees) that they must remove as much friction as possible in the buying and owning processes for both their own offerings and the offerings of their independent software vendors (ISVs) (i.e., partners). ISVs or cloud technology service providers (TSPs) recognise the need to reach large and increasingly diverse buying audiences.

“Establishing one’s own marketplace or participating as a provider in a third-party marketplace is a route to market that is becoming increasingly popular. Distributors and other third parties also see the opportunity to create strong ecosystems (and customer bases) while driving efficiencies for partners and technology service providers,” said Mr. Plummer.

Smartphone Disintermediation

The use of other devices, such as virtual personal assistants (VPAs), smartwatches and other wearables, may mean a shift in how people continue to use the smartphone.

“Smartphones are, today, critical for connections and media consumption. However, over time they will become less visible as they stay in pockets and backpacks. Instead, consumers will use a combination of voice-input and VPA technologies and other wearable devices to navigate a store or public space such as an airport or stadium without walking down the street with their eyes glued to a smartphone screen,” said Mr. Plummer.

CIOs and IT leaders should use wearability of a technology as a guiding principle and investigate and pilot wearable solutions to improve worker effectiveness, increase safety, enhance customer experiences and improve employee satisfaction.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

Back To Top