skip to Main Content
Iscar’s Digital Tools For An Industry 4.0 Smart Factory

Iscar’s Digital Tools For An Industry 4.0 Smart Factory

Industry revolutions have been happening since the 1700s and with every industrial revolution, a paradigm shift occurs which changes the way science and humanity interact, impacting the economy and industries in a major way worldwide.


We are now on our fourth industrial revolution and it is not simply about incorporating technology into industries but it is connecting the physical with the digital, empowering leaders to efficiently manage every aspect of their corporation and effectively leverage on the instant and massive data aiding in the growth of one’s business. Iscar, a multinational metalworking company, aims to create the factory of the future with their next-generation digital solutions for manufacturers.

In hopes of creating the ultimate dream of every manufacturer, Iscar’s latest developments relate to both cutting tools and the tool informational essentials as well.

FULL ARTICLE AVAILABLE >> https://bit.ly/3EaPeyv

You might be interested:
New Groove With Sodick’s “I GROOVE”
Grind On A New Level With Studer WireDress
Beneficial Modularity
A True Precise, Economical, Future-Oriented 4-AXIS
Cartesian, 6-AXIS And Scara?
Achieving Quick And Easy Machining

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

CONNECT WITH US:  LinkedIn, Facebook, Twitter

Beneficial Modularity

Beneficial Modularity

Modular systems have succeeded in finding their way into the lives of many people, from LEGO construction toys to IKEA’s modular furniture.

Article by ISCAR.


In metalworking, typical examples of these systems are unit-built machines and modular fixtures. As for cutting tools, modular structures have proven their efficiency in this area as well, and various tool manufacturers have developed their own modular products that are popular with their customers. The main benefits of modularity are versatility and time savings. A modular concept facilitates the quick and easy building of an optimally customized cutting tool using an assembly of standardized elements. Hence, customers don’t have to order a costly, specialised tool and wait months for delivery. If a tool is urgently needed for immediate production, a suitable solution is close at hand.

This concept contributes to reducing warehouse stock and diminishing inventory lists that cut manufacturing costs. However, the modular tool concept is not free of disadvantages. The main disadvantage is the decrease of rigidity; an assembly of several elements is not as stiff as an integral product and the assembled structure may lose accuracy when compared to a one-piece design. When deciding on a particular tool, both advantages and disadvantages of the modular concept need to be considered. The customer is the only one that can decide which is the best tool for his needs based on production strategy, current production demands, or an immediate need for a tool. The cutting tool manufacturer should provide the customer with the means to make the correct choice and at the same time continue to develop modular products that achieve greater adaptability, rigidity, and accuracy.

A glance at ISCAR’s modular cutting tools makes it possible to showcase the design features of a product.

Full Article Available >> https://bit.ly/3iDNhCv

You might be interested:
A True Precise, Economical, Future-Oriented 4-AXIS
Cartesian, 6-AXIS And Scara?
Achieving Quick And Easy Machining
What Is Successful Milling?

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

CONNECT WITH US:  LinkedIn, Facebook, Twitter

On High RPM

On High RPM

Andrei Petrilin, Technical Manager of ISCAR discusses the importance of high-speed spindle and the requirements in high-speed machining (HSM). 

High-speed machining (HSM) has not only led to a significant difference between machine tools but has also brought awareness to the high-speed spindle; perhaps, the most important and central component of high-speed machine tools and a key factor for the success of HSM.  

High Speed Machining

Operating a spindle with high rotation speed and gaining the optimal balance between the provided speed and torque is the main task of high spindle engineering.  The spindle’s performance depends on several different factors. One of the main factors relates to the design concept of a single- or combined twin-motor bearing system, seal components, and a tool retention method.

When machining, the spindle is not in direct contact with the workpiece but interacts with it through another technological system – the cutting tool. This connection acts as a conductor and should transform the impressive capabilities of a high-speed spindle into improved machining results. Another element between the cutting tool and the spindle is the toolholder which is fitted into the spindle. The poor performance of this small assembly, the cutting tool and toolholder, may reduce the function of the spindle to zero. Therefore, HSM toughens the accuracy, reliability, and safety requirements for the assembly of the spindle extension.  

High-speed rotation generates centrifugal forces. In HSM, when compared with traditional machining methods, these forces grow exponentially and turn into a significant load on a cutting tool which determines the tool’s durability. In indexable milling, high centrifugal forces may cause insert clamping screws to break, inserts to loosen and a cutter body to fail. Formed fragments can not only damage a machine and a machined part but can be very dangerous to the operator.

In such conditions, cutting tool manufacturers are compelled to consider the design and technological means necessary to ensure appropriate reliability of their products. Hence, the focus on indexable milling cutters should consider secure insert mounting and a robust body structure.

Reliable Milling

Let us start with a clamping screw, the smallest and weakest element of a whole technological system with a great impact on the system’s reliability.  The same can be said about the clamping screw in relation to a high-speed indexable milling cutter.  Applying dynamometric keys controls the tightening of the clamping screw. (Fig. 1). However, ensuring the torque is tightened sufficiently is not enough to reliably operate the cutter. Intelligent design is directed to minimise the dynamic load on the clamping screw.

To continue reading this article, head on over to our Ebook!

 

Check these articles out:

Burgsmuller: WM 250-8000 Whirling Machine

Top 5 Articles In 2020: COVID-19, Fast-Fab & Machining

The Essential Guide To CNC Milling Machines

New Dimensions In Deep-Hole Drilling With Walter

Changing Times In The Metal Cutting Industry

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

Tool Craft For Aircraft

Tool Craft For Aircraft

Andrei Petrilin, Technical Manager of ISCAR showcases its new developments for aircraft machining of tomorrow.  

In machining aerospace components, the main challenges relate to component materials. Titanium, high-temperature superalloys (HTSA), and creep-resisting steel are difficult to cut and machining is a real bottleneck in the whole aircraft supply chain. Poor machinability of these materials results in low cutting speeds, which significantly reduces productivity and shortens tool life. Both these factors are directly connected with cutting tools. 

In fact, when dealing with hard-to-machine typical aerospace materials, cutting tool functionality defines the existing level of productivity. The truth is, cutting tools in their development lag machine tools, and this development gap limits the capabilities of leading-edge machines in the manufacturing of aerospace components.  

Modern aircraft, especially unmanned aerial vehicles (UAV), feature a considerably increased share of composite materials. Effective machining composites demand specific cutting tools, which is the focus of a technological leap in the aerospace industry.

Aircraft-grade aluminum continues to be a widely used material for fuselage elements. It may seem that machining aluminum is simple, however, selecting the right cutting tool is a necessary key to success in high-efficiency machining of aluminum.

A complex part shape is a specific feature of the turbine engine technology. Most geometrically complicated parts of aero engines work in highly corrosive environments and are made from hard-to-cut materials, such as titanium and HTSA, to ensure the required life cycle. A combination of complex shape, low material machinability, and high accuracy requirements are the main difficulties in producing these parts. Leading multi-axis machining centers enable various chip removal strategies to provide complex profiles in a more effective way. But a cutting tool, which comes into direct contact with a part, has a strong impact on the success of machining. Intensive tool wear affects surface accuracy, while an unpredictable tool breakage may lead to the discarding of a whole part. 

A cutting tool – the smallest element of a manufacturing system – turns into a key pillar for substantially improved performance. Therefore, aerospace part manufacturers and machine tool builders are waiting for innovative solutions for a new level of chip removal processes from their cutting tool producers. The solution targets are evident: more productivity and more tool life. Machining complex shapes of specific aerospace parts and large-sized fuselage components demand a predictable tool life period for reliable process planning and a well-timed replacement of worn tools or their exchangeable cutting components.

Coolant jet

In machining titanium, HTSA and creep-resisting steel, high pressure cooling (HPC) is an efficient tool for improving performance and increasing productivity. Pinpointed HPC significantly reduces the temperature at the cutting edge, ensures better chip formation and provides small, segmented chips. This contributes to higher cutting data and better tool life when compared with conventional cooling methods. More and more intensive applying HPC to machining difficult-to-cut materials is a clear trend in manufacturing aerospace components. Understandably, cutting tool manufacturers consider HPC tooling an important direction of development.

ISCAR, one of leaders in cutting tool manufacturing, has a vast product range for machining with HPC. In the last year, ISCAR has expanded its range by introducing new milling cutters carrying “classical” HELI200 and HELIMILL indexable inserts with 2 cutting edges (Fig. 1). This step brings an entire page of history to ISCAR’s product line.

The HELIMILL was modified and underwent changes which led to additional milling families and inserts with more cutting edges. The excellent performance and its close derivatives of the original tools ensured their phenomenal popularity in metalworking. Therefore, by adding a modern HPC tool design to the proven HELIMILL family was a direct response to customer demand and the next logical tool line to develop.

In Turning, ISCAR considerably expanded its line of assembled modular tools comprising of bars and exchangeable heads with indexable inserts. The bars have both traditional and anti-vibration designs and differ by their adaptation: cylindrical or polygonal taper shank. A common feature for the nodular tools is the delivery of internal coolant to be supplied directly to the required insert cutting edge (Fig. 2). The efficient distribution of coolant increases the insert’s tool life by reducing the temperature and improving chip control and chip evacuation; substantially increasing this application line in the aerospace industry.

To continue reading this article, head on over to our Ebook!

 

Check these articles out:

Autodesk and Airbus Demonstrate Impact Of Generative Design On The Aerospace Industry

Round Tool Concepts: Indexable, Solid or Both

Sandvik Coromant Expands Digital Machining Division In Southeast Asia And Oceania

Pulsed Micro Arc Welding for Coil Terminations Increases Line Throughput

Optimising Aerospace Parts Manufacturing

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Electrification In The Automotive Industry

Electrification in the Automotive Industry

The automotive industry is on the brink of colossal changes. Marat Faingertz of ISCAR looks into the impact of this trend on the metalworking industry, and how new machining requirements can be addressed.

Public awareness of global warming, together with a pressing concern to create and maintain a clean environment, has led to a series of legislations worldwide that is forcing automakers to decrease CO2 emissions. Apart from improving fuel consumption, downsizing engines, and making lighter vehicles, automakers must turn to new technologies in order to cope with these emission limitations.

A rapid increase in battery electric vehicle (BEV) development, manufacture, and implementation, shows that electric vehicles are not only the future but are, in fact, the present. The automotive industry is on the brink of colossal changes and soon our perception of cars and transportation may alter completely.

ISCAR, a company with many years of experience in the production of metal cutting tools, offers unique, cutting-edge solutions for the new BEV Industry. As a leader in providing productive and cost-effective machining solutions, ISCAR strives to stay up to date with all the new trends and technologies and be a part of a brighter, greener future.

The following is a list of some of the common component machining processes in the BEV industry and some of the leading possible machining solutions and recommendations for each part.

Stator Housing Machining

One of the most notable trends of the electric vehicle powertrain is its simplicity. There are far fewer moving parts compared to the traditional internal combustion engine (ICE), therefore, manufacturing time and cost dramatically drop when producing BEVs. 

One of the main components of an electric motor is the motor (stator) housing made from aluminium. A special approach is needed to achieve this part’s critical key characteristics of lightweight, durability, ductility, surface finish and precision, including geometrical tolerances. The partially hollow form represents an additional challenge and maintaining low cutting forces is essential for roughness and cylindricity requirements.

ISCAR’s complete machining solution for this process has facilitated the transformation from the standard costly lathe-based process to an economical machining centre. Our aim is to reduce scrapped parts and reach an optimal CPK ratio (Process Capability Index—a producer’s capability to produce parts within the required tolerance).

Main Diameter Reaming

The most challenging operation in machining the aluminium stator housing is the main diameter boring and reaming. Because of the trend to use low power machines, the tool’s large diameter and long overhang require creative thinking to minimise weight and spindle load while maintaining rigidity. Exotic materials such as titanium and carbon fibre are used for the tool body, as well as the welded frame design.

The use of Finite Element Method (FEM) helps resolve the obstacles associated with this challenging application by enabling the consideration of many parameters, such as cutting forces, displacement field during machining, natural frequency, and maximum deformation.

To continue reading this article, head on over to our Ebook!

 

Check these articles out:

Automotive Manufacturing Developments In Southeast Asia Amid COVID-19

SLM Solutions Signs MoU For The Purchase Of Five NXG XII 600 With Major European OEM

ANCA’s Third Tool Of The Year Competition Celebrates Modern Cutting Tools That Shape Our World

Toyota Strengthens Automotive Production Amidst Challenging Year

Toyota To Invest Two Billion In Indonesia For Electric Vehicles

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

The Logic Of Development

The Logic of Development

Andrei Petrilin of ISCAR writes about the different directions for the development of cutting tools.

In machining, a cutting tool is an element of a technological system that shapes a part by material removal. The system comprises a machine tool, a workholding fixture and a tool holding device.  Shaping a part is performed by various machining processes that use different cutting strategies. The progress made in machining tools resulted in modern machines that enable combined and whole process operations; processes that were separated in the past.  Moreover, advanced machine tool capabilities assure applying progressive machining strategies to achieve maximum performance.

The metalworking industry must deal with different engineering materials. Progress in material science and metallurgy not only brought in new exotic materials but also provided technologies to create materials with pre-defined properties. Producing components from such materials has significantly improved the working parameters of the parts, but machining has become more difficult. In many cases, the root of successful machining was connected only with cutting tool limitations.

A cutting tool, the smallest element of the technological system, connects the part directly and is the link between the machine and material. For realising advantages of high-tech machine tools and productive machining strategies, the cutting tool must meet appropriate requirements. Finding a decent answer to these requirements to respond to ever-growing demands of modern metalworking is a base for new developments in the cutting tool field.

The metalworking industry has been through a rough time with the COVID-19 pandemic, which has affected the world economy and has inevitably led to a decline in economic indicators in the industry. Many bright prospects before the coronavirus were replaced by modest hopes, while on the other hand, this has been a time for deeper analysis of industrial trends, a look into tomorrow, forecasts, and future planning. Progress has not stopped. Metalworking is at the door of serious changes, and the manufacturer should be ready to adopt them. The forthcoming changes cannot bypass cutting tool production—one of the more important links in the metalworking chain. Therefore, to have a clear understanding of the direction of industrial progress and the results of new requirements for the cutting tools of tomorrow is a cornerstone to success for a tool manufacturer. This is the key to new tool developments and the demand for a wide range of products.

There are different directions for the development of cutting tools. The “traditional” way is to make the tools stronger, more productive and cost-effective, a reflection on the natural requirement of the customer to a consumed product. Other directions of development are related to advanced manufacturing technologies that have deeply ingrained the metalworking industry; whereby available tooling solutions still leave a broad field for improvement.

To continue reading this article, head on over to our Ebook!

 

For other exclusive articles, visit www.equipment-news.com.

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Outlook 2021

Outlook 2021

Experts in the metalworking industry provided their outlook for the coming year and their insights on how manufacturers should navigate whatever challenges the industry might still have along the way to recovery.

The year 2020 had been an extraordinary one, with the COVID-19 pandemic basically putting the global manufacturing industry on a standstill—at least except those essential industries that have scrambled to create medical equipment such as ventilators, and testing kits, as well as personal protective equipment including face masks and face shields.

The pandemic put into spotlight the agility and resiliency needed in every manufacturing industry, as supply chains get stuck and manufacturers are at a loss as to how to obtain their raw materials and parts. 

Nevertheless, the show must go on. And as vaccines are now being developed, it won’t be long until we see light at the end of this tunnel. In this special feature, experts in the metalworking industry provided their outlook for the coming year and their insights on how manufacturers should navigate whatever challenges the industry might still have along our way to recovery.

Creaform

Simon Côté, Product Manager

The metalworking industry will continue to undergo major transformations in 2021. As customers continue to require more complex and sophisticated parts, it is becoming even more crucial for metalworking firms to implement new strategies and technologies to monitor the quality and compliance of final products—all while accelerating throughput due to demanding timelines.

Click here to read Simon’s outlook! 

Faccin Group

Rino Boldrini, Metal Forming Machine Specialist

There is no doubt 2020 will be remembered by most as a year to forget due to the pandemic and the global uncertainty, but it will also be considered as a starting point by those that were able to adapt to the market challenges by implementing or accelerating innovation-focused plans.

Click here to read what Rino expects this year! 

TRUMPF Asia Pacific

Chong Chee Ter, Managing Director

The outlook for the global economy in 2020 deteriorated significantly primarily due to the massive economic impact of the coronavirus pandemic. In 2021, we nevertheless are expecting global GDP growth to return back to the level of 2019.

Click here to read Chee Ter’s insights for 2021! 

igus

Carsten Haecker, Head of Asia Pacific

Metalworking companies across all industries have been facing increasing demands for years now—albeit some levelling was and is still visible in the current pandemic.  To hold their own fortress against international competition, companies need versatile and efficient solutions for a wide variety of production tasks. One solution is the digitalization and networking of production and logistics processes—the basic technologies surrounding Industry 4.0.

Click here to read Carsten’s outlook! 

ISCAR

Eran Salmon, Executive Head of Research and Development

“Business as Usual” is constantly being redefined at ISCAR to meet the varying needs of global metalworking industries. In such a reality, innovative technologies and business opportunities emerge to meet all the challenges ahead. 

Click here to read Eran’s insights for 2021! 

Marposs KK Japan and SEA

Marco Zoli
President

2020 has seen the COVID-19 pandemic act on top of the existing geopolitical factors and on the shift to e-mobility, with the result of accelerating the evolution of the manufacturing environment. The trend of focusing on production resilience is set to continue, resulting in a more localized supply chain and a higher concentration on global players. 

Click here to read what Marco expects for the year! 

Paul Horn GmbH

Lothar Horn, CEO

Despite the restrictions predicted for 2021, most businesses have not stood still. In industries where exhibitions play a major role, it was more a question of how to bring innovations to market—especially with regard to communication. Many of the people I spoke to were initially very excited about the digital possibilities, and certainly rightly so. 

Click here to read Lothar’s outlook for 2021! 

Hexagon Manufacturing Intelligence

Boon Choon Lim, President, Korea, ASEAN, Pacific, India

The year 2020 was characterized by virtual work and learning, as individuals and businesses reinvented themselves to maintain productivity. Optimising the digital landscape will continue in 2021, as companies embrace innovation to meet their needs. 

Click here to read what Boon Choon expects in 2021! 

Sandvik Coromant

Rolf Olofsson, Global Product Manager

To stay competitive, manufacturers need to rely more on digitized processes and less manual interaction. To meet the new requirements, we need to continue to drive the development and digitalization of the manufacturing industry. Sandvik Coromant have a unique venture with Microsoft, combining Sandvik Coromant’s expertise in machining with Microsoft’s technical solutions. 

Click here to read Rolf’s insights for 2021! 

Siemens Digital Industries Software

Alex Teo, Managing Director and Vice President for South East Asia

2020 underscored two important pillars of manufacturing: adaptability and resiliency. With COVID-19 disrupting global supply chains, manufacturers need to inject their production chain with the agility to pivot and adapt to constantly changing market conditions. 

Click here to read what Alex expects in 2021! 

SLM Solutions Singapore

Gary Tang, Sales Director, Southeast Asia

“Change is the only constant in life” and this is characteristically so for 2020 when the COVID-19 pandemic struck. Though businesses were disrupted, but in the same fast pace, opportunities arose for additive manufacturing (AM) in the medical frontline, responding quickly to severe restrictions in supply chains and traditional manufacturing bases.

Click here to read Gary’s outlook for 2021! 

Renishaw ASEAN

Steve Bell, General Manager

Unusual times in 2020 have brough significant difficulties in all walks of life, and manufacturing is no exception. The downturn in industrial activity has been evident during these COVID-19 times—mandatory closures, disruptions to the supply chain, and the stringent social distancing regulations imposed a devastating impact worldwide including the ASEAN region.   

Click here to read what Steve expects this year! 

VDW (German Machine Tool Builders’ Association)

Dr. Wilfried Schäfer, Managing Director

The coronavirus pandemic is leaving deep scars in the German and international machine tool industry. For 2020, the VDW expects a decline in production of 30 percent. After economic data and economic indicators showed an upward trend in the third quarter, uncertainty in the economy is currently increasing in view of the second wave of the pandemic.

Click here to read Dr. Wilfried’s outlook for this year! 

For other exclusive articles, visit www.equipment-news.com.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Barrel Cutter Shapes A New Milling Trend

Barrel Cutter Shapes a New Milling Trend

Advanced workpiece manufacturing technologies—such as metal injection moulding, 3D printing, investment casting and close-tolerance forging—innovative machine tools, and a quantum leap in digitizing of manufacturing will increase the needs for finishing complex surfaces with minimum machining stock. Article by Andrei Petrilin, ISCAR.

Endmills featuring a cutting edge that is actually the segment of a large-diameter arc were introduced approximately 25 years ago. As the cutting-edge shape of these endmills is reminiscent of a barrel profile, terms such as ‘barrel milling cutters’, ‘barrel endmills’ or, in shop talk, often simply ‘barrels’ soon became common when referring to these types of endmills.

At first, the use of these barrel-shape mills was limited more or less to a few specific applications, such as machining 3D surfaces of complex dies and turbomachinery components. However, advances in 5-axis machining and in CAM systems have significantly expanded the boundaries of barrel endmill applications.

At the same time, the design principle of a cutting edge as the segment of a large-diameter arc has been realized successfully in other types of milling cutter—the tools for high feed milling (HFM), also referred to as ‘fast feed’ (FF) milling. The concept provides a toroidal cutting geometry that ensures productive rough machining at extremely high feed rates due to a chip thinning effect. Unlike high feed milling tools, barrel endmills are intended not for roughing but for finish and semi-finish machining of 3D surfaces with low stock removal.

Traditionally, ball-nose and toroidal cutters perform these machining operations. However, the large-diameter arc of the endmill cutting edge results in a substantial reduction of the cusp height generated between passes machined by a ball-nose or toroidal cutter. Another advantage of this type of cutting edge versus ball-nose and toroidal cutters is a significant increase in the distance between passes (a stepover or a stepdown, depending on the direction of a cutter displacement after every pass)—at least five times more without degradation of the surface finish parameters! (Figure 1) This means that the number of passes and, subsequently, machining time can be noticeably reduced. Increasing the distance between passes also improves tool life and, therefore, diminishes tool cost per part.

The classical barrel shape in endmills has undergone some changes to make these cutters more versatile. Combining a ball-nose tip with peripheral large-arc cutting edges creates a multi-purpose ‘cutting oval,’ which facilitates the use of a barrel endmill as a ball-nose milling tool. 

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

CNC Upgrade Programme Provides US Cutting Tool Maker with Major Productivity Advantage

Sandvik Coromant’s CoroBore 825 Damped Fine-Boring Tool Improves Security And Productivity

The Next Stage In The Evolution Of ISO Turning

Blum-Novotest To Highlight Measuring, Testing Technology at EMO 2019

A Strong Partner for Every Sawing Task

Arno Werkzeuge Holder With Targeted Coolant

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Grade Upgrade

Grade Upgrade

Has the development of new tool materials already reached its peak and is experiencing stagnation? Find out more from Andrei Petrilin and Marcel Elkouby, ISCAR.

Grade Upgrade

Fig 1: CBN grade IB20H insert for hard part turning.‎

Building a house begins with laying the foundation. The strength and the reliability of the whole house depends on how strong the foundation is. In cutting tool engineering, this foundation is a cutting material.

There are various types of cutting materials: cemented carbide, polycrystalline diamond, high speed steel, and ceramics, to name a few. Each type contains different grades. At various stages in metal cutting history, the introduction of each cutting material and its use has led to a significant change in the level of cutting speeds and, consequently, productivity. However, if the previous century, especially its second half, was marked by the rapid progress of tool materials, today we do not see any significant new solutions in this field. Does this mean that the development of new tool materials has already reached its peak and is experiencing stagnation?

Of course not. It is simply that the new developments are deep within the cutting material and are focused on its structure, and can be observed only with the help of scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBCD), and other sophisticated methods. They cover a tremendously complicated world of coatings that is extremely diverse despite its very small thickness, measured only by microns. 

Cemented Carbide

Grade Upgrade

Fig 2: Parting tool carrying IC1010 grade insert‎.

The most commonly available cutting material today is cemented carbide (primarily coated), also known as ‘hard metal’, ‘tungsten carbide’ or simply, carbide. In terms of performance, it represents a reasonable balance between efficiency, tool life and cost. A combination of cemented carbide, coating, and post-coating treatment produces a carbide grade. Only one of these components—the cemented carbide—is an essential element in the grade. The others are optional.

Cemented carbide is a composite material comprising hard carbide particles that are cemented together by binding metal (mainly cobalt). Most cemented carbides used for producing cutting tools integrate wear-resistant coatings. There are also various treatment processes that are applied to already coated cemented carbide (for example, the rake surface of an indexable insert). New developments in cemented carbide, as a tool material, are concentrated in three directions: carbide production technologies, advanced coating methods, and innovative post-coating techniques. Considerable success has been achieved in each of these directions; this is reflected in the wealth of new products introduced to the market by leading cutting tool manufacturers.

Cutting tool customers might analyze the grades using parameters such as productivity, tool life, and performance. Indeed, the question of how a new product was created to meet customer requirements fades into the background as applicability and efficiency form the main measure of progress from the customer’s  point of view. 

Upgrading Carbide Grades

In upgrading carbide grades, ISCAR is very sensitive to a challenge faced by the metalworking industries. In this context, ISCAR’s tool material solutions—developed considering the trends of modern metalworking—can be quite indicative. Take, for example, difficult-to-cut materials such as titanium and heat-resistant steels and exotic superalloys. Recently, the share of their application in industry has increased significantly. Along with the aircraft industry, a traditional consumer of these materials, they may be increasingly found in power engineering, automotive, and oil and gas branches. The growing usage of the materials demands technological solutions, including machinery and cutting tools. The new tools require an appropriate foundation, made of advanced cutting tool materials,  to achieve the desired cutting geometry. And for the construction of this foundation, ISCAR offers its new effective ‘bricks’—upgraded carbide grades. 

 

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Walter Launches Double-sided Indexable Inserts

Round Tool Concepts: Indexable, Solid or Both

Long Tool Life In Series Production

The Next Stage In The Evolution Of ISO Turning

c-Com Projects With MARPOSS And Oerlikon Balzers To Introduce Intelligent App For Tooling

Seco Tools: Prevent Delamination In Hybrid Stacked Material Machining

Schunk Releases Robot Deburring Tool

Doosan Machine Tools Partners With TITANS Of CNC

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top