skip to Main Content
A Look At Walter’s Two-in-One Machining Concept

A Look at Walter’s Two-in-One Machining Concept

For 17 years now, tool manufacturers have been successfully implementing Walter’s two-in-one concept in production. Here’s a look at what exactly is behind this concept. Article by Walter Maschinenbau GmbH.

Now more than ever, the ability to be flexible and agile in your production is a key competitive advantage in the metalworking industry. The more process steps you can eliminate, the leaner your become, with improved efficiency and less waste—in terms of the time it takes to switch to a new machine to do a second process, and the energy needed to run the machine; what more in a volume production operation.

From a production viewpoint, the two-in-one concept means that users can completely erode tools (PCD or polycrystalline diamond) and also completely grind tools (carbide) using one and the same machine. What is more—and this is one of the key advantages of a two-in-one concept—both processing methods can be used on one and the same tool without the time-consuming step of switching to a second machine. This is especially necessary and more efficient in the case of modern PCD tools where the carbide blank already has soldered PCD.

The ability to erode, grind, or even do both in one clamping operation gives the user an unparalleled level of flexibility in their production processes. Walter Maschinenbau GmbH’s two-in-one machines can be used to process any PCD tool in any field, whether it be the wood, automotive or aerospace sectors, or even special applications. As the use of complex and modern full-headed PCD tools is constantly increasing, so is the demand for combined processing, i.e. eroding and grinding using a single machine. This trend is already clearly evident when one considers the new kinds of PCD tools required, amongst other things, for carbon fibre reinforced polymer (CFRP) processing in the aerospace sector, for example. Combined processing is the only way to efficiently produce such PCD tools.

A further advantage can be derived from this in business terms: The fact that the user can perform both eroding and grinding or combinations of the two processing methods using one machine means that investing in such a two-in-one machine represents a risk-free introduction to the PCD field for companies that have not been able to or have not wanted to produce such tools until now. If it turns out that the PCD business does not develop as expected, the same machine can simply be used to completely grind the previous product range.

Enhancing the Two-in-One Concept

Ever since presenting it to the world at the EMO tradeshow in 2001, Walter has been continuously further developing this two-in-one concept, and today offers a total of three machines based on it. Even back then, the company knew that a powerful grinding spindle was essential for perfect production results and that many tools could be manufactured more efficiently with rotary eroding than with wire eroding.

In 2006, Walter introduced a software module that boosted the benefits of the two-in-one concept because it now also allowed electrode/grinding wheel changers to be automatically implemented. That same year also saw the introduction of ‘Fine Pulse Technology’ for all two-in-one machines, setting new standards in terms of the surface quality, cutting edge roughness, and process reliability of PCD tools.

In particular, the generator was recognised as a central element and therefore has been completely redesigned. Improvements in eroding software and a variety of other factors based on the machine design were also optimised as part of Fine Pulse Technology. The difference to the other tools on the market can even be seen with the naked eye on the most common PCD types with 10µm grain size. A tool produced with Walter’s technology on a two-in-one machine shines on its free surface, similar to a polished (ground) tool. Even coarse-grained PCD types, which previously could not be fine finished on the market, can be eroded with the new technology, and a perfect surface quality can be produced.

In some cases, even entire steps in the production chain can be omitted because the eroded tools no longer have to be re-sharpened or polished. Finally, the Helitronic Tool Studio software solution was enhanced with the software licence ‘Eroding’ in 2017, making the tool shaping process even easier and clearer, especially for PCD tools.

 

Read more articles here:

Agathon Showcases Its Innovations For Tool And Mould In EMO 2019

Adapting Cutting Tools To Changing Trends

Sandvik Coromant’s CoroBore 825 Damped Fine-Boring Tool Improves Security And Productivity

Hexagon Puts Spotlight on Machine Tool Innovation At EMO 2019

Schmersal Group Establishes Subsidiary In Thailand

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Cutting Tool Inserts To See Ballooning Sales

Cutting Tool Inserts To See Ballooning Sales

The global cutting tool inserts market is likely to account for about US$ 18.1 Billion by the end of the assessment year 2019, and is estimated to expand at a CAGR of about 7.0 percent during the forecast period of 2019-2029, according to a report by Persistence Market Research. Among the type of material, the carbides segment is anticipated to grow at a noteworthy rate, owing to their cost effectiveness and durability, thereby contributing to the relatively high growth rate of the carbides segment over the forecast period.

Key applications of cutting tool inserts such as threading, milling & shearing, parting and grooving, and drilling & boring, are expected to drive the cutting tool inserts market growth at a significant rate. The stainless-steel segment is estimated to retain its market share over the forecast period. According to the report, the demand for cutting tool inserts is expected to be driven primarily by the rise of automotive industry, oil & gas sector, construction industry, urbanisation, and the increasing demand from other end use industries. Furthermore, massive demand from automotive original equipment manufacturers (OEMs), automotive refinishing service companies, construction companies, general industrial manufacturers & maintenance service providers, marine service companies, manufacturers of cans, coils, and wood & transport industries will contribute to the demand for cutting tool equipment, which, in turn, will augment the demand for cutting tool inserts.

Europe’s Increasing Investments In Asian Markets Fueling Market Growth

European investments in Asia are motivated by the need to reduce costs, to exploit benefits of the local supply chains and to be close to an untapped customer base which enables them to better understand user needs and better serve their customers. European machine tool builders’ investment strategies abroad vary from strategic alliances to joint ventures, from the acquisition of foreign companies to opening production facilities in third countries. Increasing investments of global car manufacturers in emerging countries, for instance, India, China and Brazil, along with large publicly funded energy and infrastructure projects in these countries, make them attractive enough for European investments from machine tool builders.

APAC and Europe to be the Top Revenue Pockets

Geographically, APAC and European markets are picking up pace in the global cutting tool inserts market, owing to expansion of industrial infrastructure and an upsurge in the automotive and oil & gas industry over the years. Europe being an automotive hub has a lot of scope for transportation industry including railways. Most of the metal used in this industry is machined using the cutting tool inserts thus accounting for better sales of the same. The transportation segment is anticipated to soar the cutting tool inserts market in Europe. The demand for cutting tool inserts is majorly driven by its applications in various sectors such as aerospace, automotive, marine, medical, woodworking, die & mould, driven by growth in global GDP. Moreover, stable economic growth in developing countries such as India, Brazil, China, and ASEAN countries, and rising urbanisation and expenditure in these regions, acts as the major growth factors that are propelling the growth of the cutting tool inserts market.

Furthermore, the APAC region is also expected to remain the most attractive region in terms of market attractiveness by market share index, on account of the largest volumes of cutting tool inserts consumptions expected by the region, over the forecast period, mainly driven by China. A high growth rate due to considerable industrial activity in the region is expected to contribute to the rising demand. Europe is expected to hold a significant market share in terms of both value and volume after APAC region, owing to growing automotive and other end use industries and infrastructural developments in the region.

Vendor Insights – Key Companies Focus on Global Footprint Expansion

The global cutting tool inserts market highlights some of the key market participants operating in the global cutting tool inserts market, such as Kennametal Inc., Sumitomo Electric Carbide Inc., Sandvik AB, Knight Carbide Inc., Compagnie de Saint-Gobain, Total Carbide Ltd., Asahi Diamond Industrial Co. Ltd., Knight Carbide Inc., Tomei Diamond Co. Ltd., KYOCERA Corporation, Mitsubishi Materials Corporation, SHOWA DENKO K.K., YG-1 Co. Ltd., Element Six, ISCAR LTD., NGK Spark Plugs Co. Ltd. (NTK Cutting Tools), among others.

 

Check out these articles:

The World Of Tube Processing

Automotive Additive Manufacturing Market Sees $9B Opportunity On The Horizon

Significantly Better Surface Finishes Thanks To Vibration Damping

Walter: Insert Grades WPV10 And WPV20 For Perform Turning Tools

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

EDM: Past, Present And Future

EDM: Past, Present and Future

As the industry moves toward Industry 4.0, EDM machines are expected to become more intelligent as manufacturers incorporate more and more advanced functionality to enhance the productivity and efficiency of the system. Article by Makino.

The electrical discharge machining (EDM) process utilises short bursts or pulses of electrical energy to erode and machine conductive materials. This process can be thought of as machining with lightning bolts, called sparks. With EDM, the number and power of each spark can be precisely controlled, thus, by modifying the amount and power of the discharge spark energy, the material removal rate, attained surface finish and resulting accuracy can be predictably and repeatedly controlled.

While EDM is commonly thought of as a slower form of metal removal compared to conventional milling and some other processes, recent advancements in EDM technology have led to significant improvements in processing times and finish quality for even the most complex and involved part geometries.

But what has now become an essential process for die/mould shops, aerospace, automotive and other manufacturers humbly began with a failure.

Brief History of EDM

In the early 1940s, two scientists in the former Soviet Union, B.R. Butinzky and N.I. Lazarenko, experimented with methods to prevent erosion of tungsten contacts caused by electrical sparking during welding. Although they didn’t find a better welding method, they discovered how to control metal erosion by immersing the electrodes in oil or water. From their research, Butinzky and Lazarenko built the first electrical discharging machine for processing metals that were difficult to machine with conventional milling, drilling or other mechanical methods such as tool steel and titanium.

Butinzky and Lazarenko drew on ideas developed by English physicist, Joseph Priestley, who wrote about the erosive effects of electricity on certain metals back in the 1770s. The Russians’ early work became known as spark machining because electrical discharges caused sparks that could be controlled to manufacture specific shapes.

Machining with Electricity

In conventional machining, the material is removed by cutting tools that turn or grind against the workpiece with a mechanical force. In the EDM process, sparks of electricity create short bursts of high energy that instantly melt and vaporise the material without making contact. Due to the non-mechanical and non-contact machining process, EDM is referred to as a “non-traditional” type of manufacturing.

The key to EDM machining is the passage of electricity from a tool (electrode) to the workpiece, which must be composed of conductive material like steel or aluminium. The tool, which can either be a small diameter wire, hollow tube, or an electrode mechanically machined into a negative version of the workpiece’s final shape, is then placed and maintained in close proximity to the workpiece during the EDM spark erosion process.

EDM technology has evolved into three distinct machining approaches:

  1. Wire EDM: Wire EDM uses a small diameter copper or brass-alloy wire to cut parts much like a band saw. Traditional uses are to make punches, dies, and inserts from hard metals for die/mold tooling applications. Uses have since expanded to include part production uses over a wide array of industries.
  2. Sinker EDM: Sinker EDM uses electrodes machined from a special graphite or copper material into the shape or contour feature needed on the final workpiece. Typically, uses include the production of small or complex cavities and forms for die/mould tooling, but have also found use in many production applications.
  3. EDM Drilling: EDM drilling uses a small diameter hollow tube electrode made from copper or brass alloys to erode holes into the workpiece. This method is typically used to prepare start holes for the wire EDM process, but have also progressed to producing small hole features found in dedicated production applications such as turbine engine components and medical devices.

Why Use EDM

One of the key advantages in EDMing is the machine’s capability to work on small corners that cannot be cleared by the milling process. Also, when it comes to precision parts, very small work pieces are prone to damage when machined with conventional cutting tools because of the excess cutting pressure. You won’t have this issue with EDM.

With conventional cutting, extremely hard materials will affect the high wear rate of the cutter. This is not the case for EDM. In fact, apart from cutting these hard pieces of materials, the EDM process also provide excellent surface finishes.

Moreover, EDM enables the processing of complex shapes that would otherwise be difficult to produce with conventional cutting tools.

Over the years, many new machine technologies have helped improve the performance of EDM systems, enabling higher cutting speeds to produce parts faster than before.

One example of the latest technologies in EDM is Makino’s U6 H.E.A.T. Extreme wire EDM, which features an industry first 0.4mm (0.016”) coated wire technology that increases rough machining rates up to 300 percent compared to traditional 0.010” brass wire, while maintaining comparable wire consumption rates of 0.6–0.7lbs/hour. As a result, the new machine is able to significantly improve rough machining speed without increasing manufacturing costs.

Addressing the Labour Skills Challenge

Despite the advancements in EDM, there continues to be challenges facing the segment. One issue is labour, in particular, the lack of skilled EDM operators.

As new technologies are being incorporated in EDM, the need for programming skills, and the setting up and operation of more complex machines with more and more functionality are increasing. This, in turn, requires more knowledge and skills needed for ordinary operators.

One way of addressing this is the introduction of Industrial Internet of Things (IIoT) applications for EDMs to reduce the otherwise long learning curve required by the system, enhance user experience and efficiency, and reduce machine downtime.

Makino’s expanded Hyper-i Control family and Remote Monitoring features intuitive, intelligent, and interactive functions that utilise familiar smartphone/tablet functionality that provide operators with a powerful and user-friendly interface.

Its unified control system for both wire and sinker EDM machines provides operators with enhanced functions to improve productivity, regardless of operator skill level. The large 24” class HD touch-screen display provides a commanding view for the operator and utilises intuitive and familiar touch Pinch/Swipe/Drag operations similar to smartphones and tablets.

Straightforward machine operation is accomplished on the Hyper-i Control with a three-step process of Program/Setup/Run flow, and there are many helpful intelligent tools and functions for the operator that provide greater convenience and flexibility, such as the standard full-function advanced Handbox. In addition, digital onboard electronic manuals, instructional training videos, and the advanced E-Tech Doctor help functions provide the operator with practical resources at their fingertips to remain highly productive.

Another EDM technology from Makino is the HyperConnect application, which facilitates machine-to-machine connectivity. HyperConnect is a suite of IIoT applications for EDMs that enhances user experience and efficiency and reduces machine downtime. They are available on all Makino EDMs equipped with Hyper-i control systems. Some of the features of HyperConnect are as follows:

  • The app enables shop managers and operators to monitor and control EDM processes from any PC, smart device, or other Hyper-i control systems on the network. It has four primary connectivity features for shop personnel to monitor, plan, and troubleshoot EDM operations.
  • EDM Mail relays machine status information to operators via email during unattended operation to help reduce downtime and support multitasking abilities. It delivers periodic, timed interval updates of a machine’s operating conditions and alerts operators of a machine stoppage.
  • Machine Viewer is an application that permits networked access to the control’s NC operation screens, which allows operators to remotely view the machine control and process information from any office environment PC or enabled smart device.
  • Machine-to-Machine Viewer gives operators remote access to view and control a networked EDM from another machine, preventing unnecessary foot traffic across the shop floor.
  • PC Viewer provides operators with remote access to all software on a networked PC directly via the control and includes accessibility to any CAD/CAM software, specialized shop tracking software, and Microsoft Office applications.

Future of EDM

It’s been a long time since the discovery of EDM for metalworking. As the industry moves toward the fourth industrial revolution, EMD machines are expected to become more intelligent as manufacturers incorporate more and more advanced functionality to enhance the productivity and efficiency of the system.

One way “intelligence” is being added to the machine is through voice-enabled machine interaction. It is just like your iPhone’s Siri—but instead of asking for directions or calling a certain person in your address book, you are giving instructions to a machine regarding the processing or machining of a particular workpiece.

Makino is the first adopter of ATHENA, the first ever voice-operated assistant technology created specifically for manufacturing work. Developed by iTSpeeX, ATHENA is designed to enable operators of all skill levels by simplifying human interactions with industrial machines. For example, with one voice request, ATHENA can search through a machine’s maintenance manual and display the needed information right at the machine.

This will give operators more ease of control and will not just save time in training and onboarding new machinists, but also in giving experienced machinists the information they need when and where they need it.

 

Read more:

Metal Removal? There’s A Robot For That!

Improving Metal Cutting Productivity With A High-Powered Sawing Machine

Global Metal Cutting Tools Outlook

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

China, SEA & Pacific Projected To Be Lucrative Regions In The Global Waterjet Cutting Machine Market

China, SEA & Pacific Projected To Be Lucrative Regions In The Global Waterjet Cutting Machine Market

According to a findings specified in the report on the Waterjet cutting machine market, the market is expected to witness steady growth over the forecast period (2018-2026), led by increasing industrialisation and manufacturing sector in emerging regions across the globe. The long-term outlook for the global Waterjet Cutting machine market is expected to remain positive and the market is expected to expand at a CAGR of nine percent during the forecast period.

 

Global Waterjet Cutting Machine Market: Dynamics

Waterjet Cutting has emerged as a versatile, cost effective and accurate alternative to conventional cutting methods such as plasma, mills, lasers and EDM for many applications. Waterjet Cutting machines find applications in many industries such as metal cutting, automotive, aerospace, defense, semiconductors, disposable products, food, glass, ceramics and paper. This process cuts material without creating heat or any mechanical stress. Waterjet Cutting offers certain green benefits as this is a cold cutting process, which eliminates waste and slag deformation, which is quite common in laser and plasma cutting processes. This cutting technology offers great accuracy, productivity and efficiency. That apart, Waterjet cutting machines are more economic than laser machines. Abrasive jets are much faster than EDM, which removes metal at a comparatively slow rate. In comparison to plasma cutting, Waterjet s operate at a much lower temperature and there is no heat affected zone while the material is being cut with a Waterjet cutting machine. These are some of the factors positively impacting the growth of the Waterjet Cutting machine market

 

Global Waterjet Cutting Machine Market: Segmentation Overview

  • On the basis of pump type, the Waterjet Cutting machine market has been segmented into direct drive pump and intensifier pump. The intensifier pump segment dominated the global market in 2017 and the segment is estimated to witness relatively high growth during the forecast period, which can be attributed to the higher efficiency and ability to deliver higher pressure as compared to direct drive pumps
  • On the basis of application, the two dimensional cutting segment is estimated to witness significant growth during the forecast period, due to the high demand for the metal fabrication industry
  • On the basis of pressure range, the Waterjet Cutting machine market has been segmented into up to 4200 Bar and more than 4200 Bar
  • On the basis of end use, the metal fabricating segment is dominating the market, followed by automotive and ceramics

 

Global Waterjet Cutting Machine Market: Regional Overview

North America, followed by Europe, dominated the global Waterjet Cutting Machine market in 2017. SEA & Pacific and China are expected to be the most lucrative regions for the growth of the Waterjet Cutting machines market and these regions are creating significant opportunities for the manufacturers of Waterjet Cutting machines. Furthermore, increasing investment in automotive and manufacturing sectors in emerging regions creates a significant opportunity for the Waterjet Cutting machine market. Additionally, the Waterjet Cutting machine market is expected to witness significant growth in developed economies over the forecast period, owing to the healthy growth of construction and metal fabrication industries.

 

Global Waterjet Cutting Machine Market: Vendor Insights

The report highlights some of the leading companies operating in the global Waterjet Cutting machine market such as A Innovative International Ltd., Caretta Technology s.r.l., CMS Industries, DARDI International Corporation, Flow International Corporation, Foshan Yongshengda Machinery Co., Ltd., H2O Jet, Hornet Cutting Systems, Hypertherm Inc., International Waterjet Machines, Jet Edge, Inc., KMT Waterjet, Koike Aronson, Inc., Metronics Technologies S.L., OMAX Corporation, Plasma Automation Inc., PTV, spol. s r.o., Semyx, LLC, STM Stein-Moser GmbH, Sugino Machine Limited, TECHNI Waterjet, TrennTek GmbH, WARDJet and Waterjet Sweden, among others.

 

Further reading:

Automotive, Electrical/Electronics Industries Driving Global Industrial Robotics Market
Collaborative Robot Market To Exceed US$11 Billion By 2030
FMI: ‘Energy Efficiency’— the Key Marketing Touchpoint of Bandsaw Machines Market Players
Smart Data in the Metalworking Industry

 
WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Tungaloy Introduces Full Profile Threading Inserts With Four Cutting Edges

Tungaloy Introduces Full Profile Threading Inserts With Four Cutting Edges

Tungaloy is expanding its TetraMini-Cut, an indexable thread turning tool series with four edged insert, to include full profile threading inserts for machining external threads in ISO metric thread standards.

The TetraMini-Cut insert comes in a compact profile with four economical cutting edges. Its unique insert clamping ensures high repeatability, accuracy, and tool life predictability. The new full profile threading insert can be mounted on the existing standard TetraMini-Cut toolholder for 60° V-profile or grooving inserts. Since the insert cuts a complete thread profile including the crest, no deburring of the thread profile is need. In addition, the optimised tool design provides minimal interference when turning towards the tailstock of the lathe. Inserts are offered in two grades: SH725 allows free cutting of fine pitch threads in small diameter bores and AH725 for universal threading applications on Swiss type as well as general lathes. The enhanced lineup of TetraMini-Cut series provides customers with increased productivity.

 

Read more:

Tungaloy: TungForce Rec End Mills
TaeguTec Adds New TOPDRILL For Large Diameter Hole Machining
Optimised Tool Management Through Integrated Process Chain
Heller: HF Series 5-Axis Machining Centres

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

Iscar: F3S Chipformer For Finish Turning On Superalloys And Exotic Materials

Iscar: F3S Chipformer For Finish Turning On Superalloys And Exotic Materials

Intended mainly for aerospace industries as well as for the oil & gas market, the new efficient chip breaker for finishing operations is designed for working with unique and tough to machine nickel based alloys (Inconel, Waspaloy, etc.), as well as other exotic materials such as titanium based alloys.

The new F3S chipformer has a remarkable positive rake angle to ensure a smooth and easy cut, with significant reduction in cutting forces and notable chip breaking results.

The F3S chipformer has been designed with geometric features to improve tool life, with a reinforced cutting edge at the area where VG (notch wear) wear tends to occur when machining superalloys and exotic materials, which causes poor surface finish and risk of edge breakage.

The chipformer is available on the most popular inserts – CNMG, WNMG and SNMG – in two main grades, IC806 and IC804, and will be available in the future also on VNMG, DNMG, and TNMG inserts.

 

Read more:

Sustainable Manufacturing Thanks To Fiber Lasers And Automation
Bystronic Releases BySmart Fiber In 4020 Format
Significantly Better Surface Finishes Thanks To Vibration Damping
igus Coating Technology Makes Abrasion-Resistant Metal Components

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Sustainable Manufacturing Thanks To Fiber Lasers And Automation

Sustainable Manufacturing Thanks To Fiber Lasers And Automation

A fiber laser cutting system, a matching automation solution, and innovative software enable companies to increase their productivity while simultaneously saving energy. The Haslach Group, based in the Allgäu region in Germany, shows how this can be done.

Twice the output for the cutting process with the same electricity consumption – fiber lasers are considerably more efficient than CO2 lasers. This saves resources while simultaneously increasing output. And this is why the transition was an obvious step for the Haslach Group: “We want to be able to fulfil our customers’ increasing demand and we have found a reliable partner with Bystronic,” says Managing Director Marita Haslach-Dann.

In order to meet the growing demand while simultaneously saving resources, two ByStar Fiber 4020 fiber laser cutting systems have been in operation in the Haslach Group’s production halls since December 2018. Each equipped with a laser output of six kilowatts, they can cut metal sheets up to a size of four by two meters – ideal for Haslach, a medium-sized company well-known for its ability to process large-format metal sheets.

Wide Range Of Applications

On the outside, the ByStar Fiber 4020 stands out thanks to its attractive design. On the inside, there is patented laser technology: a cutting head developed by Bystronic that precisely adapts the focal point of the laser beam to match the sheet thickness and material. This enables the fiber laser cutting system to consistently achieve the optimal processing quality in spite of varying sheet metal thicknesses and materials.

The ByStar Fiber 4020 cuts up to 30 millimeter thick steel and guarantees clean cutting edges in a wide range of sheet metal qualities. This makes it possible to cut intricate contours in the best possible quality. Complex geometries can also be implemented with ease. Moreover, the range of applications is broader in comparison to CO2 laser cutting machines: The new systems can handle a wide variety of sheet thicknesses and an extensive range of materials, including non-ferrous metals, such as brass and copper. The Haslach Group benefits from this added flexibility, because many of its customers have very specific requirements.

Customised Automation Solution

In order to ensure the rapid loading and unloading of the fast machines, the Haslach Group uses a matching automation solution on both of its fiber laser cutting systems: the ByTrans Cross 4020. “An ideal match,” Marita Haslach-Dann explains. “The automation helps us to work more ergonomically and to increase our throughput. This enables us to produce efficiently.” In spite of the fully automated material supply, operators can manually feed in sheets whenever required.

The inflow and outflow of materials is connected to a high-bay warehouse. The Haslach Group had specified an automated warehouse system, but only one supplier was able to meet their specific demands: “Bystronic rapidly implemented a customised solution for us,” Marita Haslach-Dann says. It was the overall package of cutting systems, automation, software, and service that convinced her.

Software Brings Transparency To Manufacturing

Cutting plans are created using the Bystronic BySoft 7 software, where programmers work in a 3D CAD environment. The 3D models provide a tangible idea of the parts that are to be produced. The BySoft 7 software automatically selects the best possible cutting technology and helps optimise cutting processes. It also ensures optimal use of the raw sheets based on the highly sophisticated nesting of parts.

Thanks to the touch screen, operators always maintain an overview: Production and machine data are retrieved in real time. Operation is so user-friendly that one employee can supervise several machines at the same time. “With the previous systems, we had one operator for every machine,” says Marita Haslach-Dann. The staff have been assigned to new tasks because the high cutting speed of the ByStar Fiber 4020 results in the output of more cut parts that require sorting.

In order to ensure all employees have an overview of the production process, the Haslach Group also relies on planning software from Bystronic, the Plant Manager. The programmer is enthusiastic: “We can always see at what capacity the machines are running,” he explains. “This allows us to flexibly coordinate individual steps of the workflow to accommodate short-term change requests.” Virtually real-time access to all the relevant production and machine data makes it possible to adapt production processes to be able to accept last-minute customer orders.

Doubled Productivity

Programming and planning software has transformed production into a digitally networked manufacturing landscape. Employees can constantly monitor the flow of information and quickly implement plans. “Our path from the incoming order to the end product has become faster and more efficient,” Marita Haslach-Dann explains. The Haslach Group’s head of the cutting department confirms this: “We have successfully increased productivity by 50 to 60 percent when processing thin sheet metal.” The results are impressive: The perfect cutting edges satisfy even the most demanding customers.

CHECK OUT THESE OTHER ARTICLES

Global Sheet Metal Fabrication Services Market To Register 3% CAGR From 2019-2023

Round Tool Concepts: Indexable, Solid or Both

Sandvik Coromant’s CoroBore 825 Damped Fine-Boring Tool Improves Security And Productivity

EMO 2019: ANCA To Launch Latest Generation Of ToolRoom Software

Tungaloy’s Latest TetraForce-Cut Chipbreaker Provides Efficiency in Difficult Grooving

OMAX Presents Waterjet Cutting Technology at EMO 2019

Significantly Better Surface Finishes Thanks To Vibration Damping

ISCAR Launches Chipformer For Finish Turning On Superalloys

Sandvik Coromant To Showcase Digital Solutions For Machining Processes At EMO 2019

Laser Cutting Technology: Why Choose It?

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Not A Small Challenge: Cutting Tools For Miniature Dental And Medical Parts

Not A Small Challenge: Cutting Tools for Miniature Dental and Medical Parts

Successful development of innovative and dynamic parts in today’s miniature dental and medical components industry presents a formidable and equally dynamic challenge to cutting tool manufacturers. Article by ISCAR.

Successful development of innovative and dynamic parts in today’s miniature dental and medical components industry presents a formidable and equally dynamic challenge to cutting tool manufacturers.

The fast-growing field is driven by enterprising orthopaedic surgeons and dental professionals together with medical screw and implant companies, who work in close cooperation with  computer aided design and manufacturing (CAD/CAM) software developers and dedicated machine and tool manufacturers to transform their inventions into parts that are revolutionizing medical and dental procedures. Each new component demands correspondingly advanced tools and geometries to create the new and complex shapes, and to ensure extreme precision and consistently excellent surfaces.

The materials used for producing medical screws and implants are titanium superalloys, although stainless steel hard materials are used when a special ratio of depth of cut to chip thickness is required. These materials are gummy and cause built-up edge (BUE), which tends to wear down edge sharpness, while the high temperatures generated during chip breaking shorten tool life and damage surface quality.

ISCAR, a manufacturer of cutting tools for metalworking, invested time and resources to develop optimal machining solutions for the medical sector, applying unique geometries, tools, and grades. Utilizing CAD/CAM systems to create custom tool assemblies according to the ISO 13399 standard, ISCAR developed cutting tools for machining miniature medical parts—specifically dental screws and four components for hip joint replacement implants: femoral head, acetabular shell, femoral stem, and bone plate.

Dental Screws

ISCAR provides dedicated cutting tools for each of the main operations involved in machining dental screws. The company developed two options for rough OD (outer dimension) turning. The SwissCut compact tool is designed for Swiss-type automatics and CNC lathes, and enables reduced setup time and easy indexing without having to remove the toolholder from the machine, while the inserts are equipped with chip deflectors designed specifically for machining small parts. The second option features SwissTurn toolholders, with a unique clamping mechanism to optimize insert clamping and replacement on Swiss-type machines, and JETCUT high pressure coolant tools. SwissCut tools are used for the turn threading operation.

CHATTERFREE endmills are utilized for the slot milling stage to maximize stock removal rate, eliminate vibration and reduce cycle time. The unique ground geometry provides excellent surface and tool life, while machining at high material removal rates.

PENTACUT parting and grooving inserts perform the cut-off operations. With five cutting edges and very rigid insert clamping, PENTACUT is a stronger insert for higher machining parameters particularly on soft materials, parting of tubes, small and thin-walled parts.

SwissCut tools are used in the face and OD turning (screw head turning) operation, while the drilling operation is performed by SOLIDDRILL solid carbide drills with 3xD and 5xD drilling depths and right-hand cut. The drills feature coolant holes.

The thread milling operation features SOLIDTHREAD thread mills, whose short three-tooth cutting zone with three flutes and released neck between the cutting zone and the shank enable precise profiles and high performance. The extremely short profile exerts a low force which minimizes tool bending, facilitating parallel and high thread precision for the entire length. The solid carbide SolidMill endmills perform the key head milling operation.

Hip Joint Replacement

Complex operations are involved in machining components for hip joint replacement, which demand high accuracy, pristine surface quality, and absolute reliability. ISCAR provides products for each operation to maximize their precision and efficiency.

Femoral Head

The machining required for a femoral head involves rough turning or rough grooving, semi-finish profile turning, rough drilling, semi-finish milling, semi-finish internal turning, internal grooving (undercut), cut-off, rough turning, and semi-finish turning.

The ISOTURN turning tools may be used for rough turning. The ISO standard tools perform most of the industry’s chip removal in applications ranging from finishing to roughing. Offered in all standard geometries, the trigon (semi-triangular) turning inserts for axial and face turning features six 80° corner cutting edges. For profile machining, ISCAR provides intricate and precise V-LOCK V-shaped special profile grooving inserts for the range of 10–36mm.

SUMOCHAM drilling tools perform the rough drilling operation, offering fast metal removal and economical indexing with no setup time. SUMOCHAM integrates a clamping system that enables improved productivity output rates and a shank designed with twisted nozzles, and a durable and stable body.

The CHATTERFREE 4-flute endmills are utilized for the semi-finish milling operation. CHAMGROOVE internal grooving inserts are applied for semi-finish grooving. The inserts possess extremely small bore diameters starting at just 8mm and incorporate internal coolant.

Semi-finish internal turning is performed by ISOTURN inserts with SWISSTURN toolholders, while the cut-off operation uses DO-GRIP twisted double-sided parting inserts which feature double-ended twisted geometry for no depth of cut limitation.

For rough turning, the SWISSTURN ISO standard insert range with small shank sizes is used. Also available for this operation are standard geometry inserts with precision ground cutting-edges and small radii for manufacturing small and thin parts. The semi-finish turning operation is performed by using CUT-GRIP inserts.

Acetabular Shell

Machining of the acetabular shell component consists of rough internal turning, finish profile milling, shouldering, upper and bottom chamfering, drilling, thread milling, external rough turning, and external grooving operations.

HELI-GRIP double-ended inserts are used for the rough internal turning operation, as the twisted design allows them to groove deeper than the insert length. Internal finish milling is performed by SolidMill 3-flute, 30 deg helix short solid carbide ball nose endmills. SolidMill endmills with 4 flutes, 38° helix perform the finish shouldering operations, as well as the special-shaped endmill which performs the upper and bottom chamfering operations that follow the drilling stage. The SOLIDDRILL solid carbide drills are used for the drilling operation.

Thread milling is performed by SolidMill solid carbide internal threading endmills, which integrate coolant holes for ISO thread profiles. ISO standard inserts with SwissTurn toolholders are used for rough turning, and external grooving is performed with CUT-GRIP precision inserts.

SolidMill endmills with four flutes, 38° helix and SolidMill three flute, 30° helix short solid carbide ball nose endmills perform the final milling operations.

Femoral Stem

Machining the femoral stem involves slotting, spot milling, drilling, chamfer milling, turning, face and profile milling operations.

MULTI-MASTER endmills with indexable solid carbide heads in the diameter range of 12.7–25mm are used for the slotting operation. Spot milling is performed by means of SolidMill endmills with four flutes, 38° helix and variable pitch for chatter dampening with 3xD relieved necks. The drilling operation uses SOLIDDRILL solid carbide drills, while chamfer milling is performed using MULTI-MASTER endmills with indexable solid carbide heads. ISO standard geometry inserts with precision ground cutting edges are used with SWISSTURN toolholders for the turning operation.

SolidMill three-flute, 30 deg helix short solid carbide ball nose endmills are employed for the profile milling operation, and SolidMill endmills with four flutes, 38 deg helix and variable pitch for chatter dampening with 3xD relieved necks are utilized for face milling.

Bone Plate

The machining required to manufacture a bone plate involves rough and finish milling, shouldering, drilling, and mill threading. For rough milling, the FINISHRED endmill geometries allow the tool to perform roughing and finishing operations at the same time. The result is the ability to apply roughing machining conditions, while obtaining excellent surface finish. MULTI-MASTER interchangeable solid carbide tapered heads are applied to the finish milling operation, whereby the curved surfaces can be machined by tilting the tool and applying a large corner radius at small cutting depths. Shouldering is performed with CHATTERFREE endmills, which enable high material removal rates, eliminate vibration, and reduce cycle time.

For the final milling stage, MULTI-MASTER four flute, 30 deg helix short solid carbide ball nose endmills in the 5–25mm range are employed, while SOLIDDRILL solid carbide drills are used to ensure stable and accurate drilling. SOLIDTHREAD 55 deg or 60 deg profile solid carbide taper thread mills are used for the mill threading operation.

Grades

Grades specifically designed for machining applications on stainless steel and super alloys such as IC900, IC907, IC806, IC908, IC328, and IC928 are ideal for milling and turning titanium and nickel-based alloys, such as Nitinol, commonly found in medical components. These grades are available for ISCAR standard tools with specially designed positive and sharp edged chipformers.

It is no small challenge to manufacture miniature parts for dental and medical devices but ISCAR has succeeded in developing highly effective cutting tools for this field that adhere to the stringent standards of quality and precision essential for medical industry applications.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Choosing The Best Machining Centre For Your Application

Choosing the Best Machining Centre for Your Application

In an interview with Asia Pacific Metalworking Equipment News (APMEN), Michael Cope, product technical specialist at Hurco Companies Inc. talks about HMCs and VMCs, and which machining centre to use for your specific applications. Article by Stephen Las Marias.

Michael Cope

Hurco Companies Inc. manufactures computer numeric control (CNC) machine tools for the metal cutting and metal forming industry. Two of the company’s brands of machine tools, Hurco and Milltronics, are equipped with interactive controls that include software that is proprietary to each respective brand. Hurco designs these controls and develops the software. The third brand of CNC machine tools, Takumi, is equipped with third-party industrial controls, allowing customers to decide the type of control they need.

Hurco’s products are used by independent job shops, short-run manufacturing operations within large corporations, and manufacturers with production-oriented operations. Its customers are manufacturers of precision parts, tools, dies, and moulds for industries such as aerospace, defence, medical equipment, energy, transportation, and computer equipment. Based in Indiana, USA, Hurco has manufacturing operations in Taiwan, Italy, the US, and China. It also has sales, application engineering support, and service subsidiaries in England, France, India, Singapore, and Taiwan, to name a few.

In an interview with Asia Pacific Metalworking Equipment News (APMEN), Michael Cope, product technical specialist at Hurco, speaks about the latest technology developments in machining centres, in particular, horizontal machining centres (HMCs) and vertical machining centres (VMCs), and discusses whether one is better than the other. He also explains their applications, the latest customer requirements, and how machine manufacturers are keeping up to meet those demands.

Q: What is your company’s ‘sweet spot’?

Michael Cope: Hurco’s ‘sweet spot’ lies in our proprietary CNC controller. Powered by WinMax software, our CNC control is the key to making job shops more profitable because it is designed to make small-batch/high-mix production efficient by reducing setup time and programming time. In fact, 65 percent of our customers answered in a recent survey that ‘The Control’ is what they most like about Hurco.

Figure 1: Powered by its proprietary WinMax software, Hurco’s CNC control is the key to making job shops more profitable because it is designed to make small-batch/high-mix production efficient by reducing setup time and programming time.

Q: What are the biggest process challenges that your customers are facing and how are you helping them address such issues?

MC: Customers are getting jobs with increasing complexity in terms of geometries and number of set-ups, but at the same time lack the machinist and programmers with the necessary knowledge and experience to execute these jobs. We help them assess their new jobs and discuss practical ways to machine their parts. It may involve a new investment with addition capabilities such as 5-axis or HMC, or simply adding a rotary (fourth axis) or trunnion table (fourth and fifth axis) to their existing Hurco machines. There are also cases where the customer utilizes our showroom demo machine to run their first article with the assistance of our applications engineer.

Q: What opportunities do you see for your company in the coming years in Asia?

MC: The recent trade disputes between the US and China, and the impending review of the cross-border tariffs in various jurisdictions have affected overall market sentiments. Global manufacturers will re-evaluate their supply chain and would likely change their investment strategies, that is, new plants and sourcing territories. We see imminent growth potential in the ASEAN region as global manufacturers realign their strategies. We will continue our investment in Southeast Asia with our partners/distributors so that our technology will help bridge the knowledge gap faced by end users in these emerging economies.

Q: How would you differentiate HMC from VMC, and what are their advantages and disadvantages?

MC: HMCs typically cost more than a standard VMC, but can provide lots of benefits to the customer: better chip and coolant control, almost always are equipped with a fourth axis rotary table, and can allow the operator to utilize multi-sided tombstone type fixturing that will facilitate a larger number of parts in a single setup. HMCs are also usually equipped with a pallet changer, which allows the operator to be loading parts while the machine is running—therefore reducing the down time necessary between cycles.

VMCs are the more traditional type of machine configuration and are found in almost every shop. For everyday job-shops, where they are running small to medium lot sizes, the required amount of machine setups necessary in a single week (or even in a single day) might make a HMC less attractive. Although they are very good at machining lots of parts—even multi-sided work—HMCs typically are not as quick and easy to setup as a VMC, and therefore might not be the best choice for a shop with a high mix of low-volume work.

In high production scenarios, a HMC can really shine. Again, the ability to fixture a larger number of parts in one setup on a multi-sided tombstone fixture, and the ability to reach at least three sides of each part, can help tremendously when running a production run with large volumes. Also, when running large volumes, with lots of cutting, a large amount of chips will be produced. The HMC is designed to assist with the efficient removal of these chips.

Q: What are the latest technology developments in HMCs and VMCs?

MC: One area of technology that comes to mind is speed and motion control. Modern machines are getting faster—both in programmable feedrates, as well as rapid traverse feedrates—and the motion control systems are getting faster, too. This increased speed not only allows shops to get work done faster, but they are also producing better parts. Surface finishes, part accuracies, and overall machine longevity are all things that are benefiting from these technology advancements, and are helping shops become more productive and more efficient.

Figure 2: The VCX600i cantilever 5-axis machine is equipped with CTS and linear scales, a 12k spindle, and B-axis travel of +40/-110 deg.

Q: Tell us more about your latest machining centres.

MC: We have launched our second-generation Performance cantilever style 5-axis machining centre, the VCX600i, designed for high speed cutting. The VCX600i features a motorized spindle with spindle speed up to 18,000rpm, a torque table with absolute rotary encoders, and several tool change options. Coupled with our new 3D Solid Model Import software, programming of a multi-sided part can be easily completed via Hurco conversational programming with literally just a few clicks.

We have also delivered our first two HM1700Ri HMCs in Asia to the oil and gas industry. The HM1700Ri features BT50 Motorized Spindle and an 800mm diameter rotary torque table that is embedded within a 1,650x840mm worktable. This unique table set-up provides the end user the flexibility to work on parts larger than the rotary table using its X, Y, Z travels.

Q: What advice would you give your customers when it comes to their machining processes and choosing their machining solutions?

MC: If a customer has a machine that is performing well in their shop, then they should use that machine as long as it keeps making them money—especially if it is paid for! However, we see too any shops that fall into the trap of buying used equipment when they need to add a machine to their shop. They think they are saving money by spending less on the purchase, but truthfully—with all the advancements in today’s controls and machine technology as a whole—they are probably losing money. The time it will take to see a return on that additional investment will be short, and the benefit they will reap from the new technology will be quick and the impact will be substantial over time.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Tungaloy’s -01 Geometry For High Precision Finish Turning On Swiss Lathes

Tungaloy’s -01 Geometry For High Precision Finish Turning On Swiss Lathes

Tungaloy enhances its ISO positive turning inserts in “-01” geometry to include a 0.4 mm (.0157″) nose radius prepared in a minus tolerance specifically for precision finishing in Swiss turning applications.

The new -01 geometry is designed to deliver consistent chip control at extremely light cutting depths of 0.5 mm (.020″) or smaller. The introduction of a 0.4 mm nose radius insert is implemented due to the increased demands in the Swiss turning market where workpieces with 0.4 mm corner radius requirements are as popular as workpieces with 0.2 mm radii. In addition, these corner radii are often required to be finished equal to or smaller than the required radius dimensions in order to minimise the impact on dimensional accuracy. Therefore, the insert nose radii of the -01 geometry are all designed and constructed in a minus tolerance to the nominal nose radii, and not exceeding it.

Combined with the existing -JS geometry, the first-choice for small part turning, the enhanced lineup of the -01 geometry provides customers with optimal chipbreaker options for various cutting depths and feed rates in Swiss turning operations.

The -01 geometry is optimised for cutting depths of 0.5 mm (.020″) or less, while -JS geometries are effective for depths of cut ranging from 0.5 mm to 3.0 mm (.020″ to .118″).

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top