skip to Main Content
Universal Robots Reaches Industry Milestone With 50,000 Collaborative Robots Sold

Universal Robots Reaches Industry Milestone With 50,000 Collaborative Robots Sold

Collaborative robots – or cobots – remain the fastest growing segment of industrial automation, projected to grow during 2021 – 2026 at a CAGR of 45.45 percent in Asia Pacific. Cobot market pioneer Universal Robots (UR) solidified its frontrunner position today by selling the 50,000th UR cobot, which was purchased by a German manufacturer to enable higher productivity and better employee safety.

The 50,000th cobot came in a special delivery as Jürgen von Hollen, president of Universal Robots, personally handed over the cobot to VEMA technische Kunststoffteile GmbH and VEMA Werkzeug- und Formenbau GmbH located in Krauchenwies-Göggingen, Germany, at a ceremony held at VEMA.

“We have worked very hard in the past 15 years to develop an entirely new market segment with a mission to enable especially small- and medium sized companies to automate tasks they thought were too costly or complex,“ says von Hollen, emphasizing how UR has created a new global distribution network, a new ecosystem of developers, and ultimately a completely new business model. “As a pioneer in this market, we put a lot of work into creating awareness, influencing standards, and changing customers’ perceptions influenced by their experience of traditional robots.”

Von Hollen noted that VEMA GmbH is a great example of UR’s mission realised: “VEMA was looking for a cost-effective, flexible, easy-to-use automation solution they could implement, program and manage on their own. They found exactly that in the UR cobot.”

 

Cobots enhance both productivity and quality

VEMA’s new collaborative robot will join a fleet of three other UR cobots already deployed in pick and place tasks in end-of-line applications at the company.

Christian Veser, managing director at VEMA GmbH, is thrilled to be the recipient of the milestone cobot and explains how the cobots have enabled the company to add a third shift, now operating around the clock. “We have enhanced our productivity remarkably and also achieved better quality,” he says. “Our employees are freed from ergonomically straining work to focus on quality testing. In navigating Covid-19 challenges, it has also been a great advantage that the cobots don’t need to keep a safety distance or undergo quarantine. They can always work,” says Veser, adding that his company appreciates the cobots so much that they gave them names.

“The first three cobots are named Elfriede, Günther and Bruno. We will name our new cobot Jürgen to honor the fact that UR’s president came here in person to deliver it.”

“15 years ago, Universal Robots started with a vision of creating robots that are safe to work alongside human workers, and empowering people to get away from doing mundane, dirty, and dangerous jobs. Today, with the COVID-19 pandemic, collaborative robots have been rapidly adopted by both small and medium enterprises and large corporation around the world. During times that require a high level of flexibility and adaptability, cobots have become a sensible solution to maintaining factory footprint and promoting value creation for organisations like VEMA,” says James McKew, Regional Director of Asia-Pacific in Universal Robots.

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Rolls-Royce Establishes Covid-19 Data Alliance To Kickstart Businesses And Economy Recovery

3D Laser Vision Systems For Industrial Welding Robots

Schunk Showcases Workpiece Tool Clamping Technology

Metrology-Grade 3D Measurements Right on the Production Floor

5 Reasons Why Cobots Are A Game-Changer For SME Manufacturers

Accelerate Mould Design-to-Manufacturing Processes to Stay Ahead

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

The Best Manufacturing Technology Trends From 2020

The Best Manufacturing Technology Trends From 2020

Trend is generally defined in one of two ways. Firstly, it might refer to a general direction in which something is heading or developing. Alternatively, it might be seen as synonym for fashion. Here, John Young, APAC director at automation parts supplier EU Automation, looks at some of the key manufacturing trends from 2020 and assesses which of these are mostly likely to play a more prominent role in 2021 and beyond.

Here to stay (at home)

By forcing businesses to facilitate remote working during lockdowns, the pandemic has encouraged a cultural shift. As the vaccine rolls out in 2021, don’t expect companies to return to previous levels of onsite working. Aided by digital technologies, manufacturing has experienced some of the benefits of remote working and greater flexibility.

Teleoperation can take many forms, but one interesting growth area in 2020 has been remote controlled vehicles in industrial settings. For example, a forklift truck can be equipped with cameras and sensors and controlled remotely by a driver working at the desk from home.

A helping robotic hand

Robot installations continue but the key growth area has been collaborative robots, or cobots. In comparison with more traditional industrial robots, cobots are smaller and are designed to be used safely alongside human workers. The uptake of this technology in metalworking and the automobile sector looks set to continue. Ford, for example, now uses cobots to install shock absorbers, freeing up human workers for more strategic tasks.

Much of this trend is in fact being driven by small and medium sized enterprises (SMEs). The size and startup costs of industrial robots shut out these companies from taking advantage of this area of automation. Cobots are small enough to be deployed in factories where space is at a premium and they require less initial investment, allowing businesses to increase their investment incrementally.

Smart learning about your suppliers

In a year where global values chains have faced unprecedented uncertainty, those companies that were quickest to embrace digital technologies in their supply chain management have braved the storm more readily.

Machine learning algorithms and their use in predictive maintenance is not an entirely new phenomenon, but its application continues to grow. As a supplier of automation parts, one growth area that has stood out for me is the use of machine learning algorithms to analyze supplier behavior, predicting when to expect a part from a supplier based on past patterns. This can improve inventory management and cash flow.

Let’s get personal

Increasing customization is being driven from both demand and supply side forces. On the demand side, customer behavior is showing preferences for greater levels of customization and personalization. The shift toward products-as-a-service business models and the ability to access and analyze large volumes of data about customer behavior is allowing manufacturers to understand this demand better.

On the supply side, there are many technological innovations that are allowing nimble manufacturers to incorporate greater customization. For example, ABB has implemented a manufacturing facility that revolves around cells of automation, in contrast to the traditional, linear production line. Instead, robots move from station to station for higher levels of customization.

Intelligence on the edge

Edge computing involves locating computer processing of data as close to the source of the data as possible. According to research by Gartner, around ten percent of enterprise-generated data is created and processed outside of traditional centralized data centers or the cloud. It is estimated that this figure will rise to 75 per cent by the middle of this decade.

Deployed intelligently as part of a blended or hybrid data architecture, edge computing can enhance predictive maintenance capabilities. For example, smart sensors deployed on industrial motors and pumps can enhance monitoring in real-time, alerting plant managers when it is time to contact a reliable parts supplier like EU Automation.  By locating the AI in the sensor itself, manufacturers save on cloud subscription services, enhance their cyber security and protect their operations from power outages.

5G rolls out and rolls on

5G is being rolled out, but its full potential will continue to roll on as it enables more and more manufacturers to transition to Industry 4.0 and the Industrial Internet of Things. 5G, one hundred times faster than 4G, is not just a trend in itself, but a key enabler of many other technological innovations and something that will profoundly impact manufacturing over the next decade.

Here in Singapore, an interesting early application is a project involving IBM, Samsung Electronics, Singaporean telecommunications company M1 and Singapore’s Infocomm Media Development Authority. The collaboration is designed to pilot 5G manufacturing use cases, as part of the country’s Smart Nation Initiative.

To give just one example from this project, 5G is facilitating the use of augmented reality (AR) for factory field engineers carrying out preventative maintenance. Without the speed of 5G, these engineers would lose hours of productivity in downloading the right AR model or require several technicians on site to resolve and issue that could be tackled remotely.

Fashion trends come and go but some trends are here to stay. 2020 has seen the increasing use of many technological innovations in manufacturing that will become increasingly prominent over the next few years. From 5G to cobots, companies large and small across the APAC region are leading the world in their adoption of Industry 4.0 and automation technology.

For other exclusive articles, visit www.equipment-news.com.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

5 Reasons Why Cobots Are A Game-Changer For SME Manufacturers

5 Reasons Why Cobots Are A Game-Changer For SME Manufacturers

For small to mid-sized manufacturers, any gain in productivity can have a huge impact. Automation offers significant advantages, but many small and mid-sized enterprises (SMEs) believe that robotics is out of their reach. These organisations cannot afford large, complex robots that do not fit within their limited floor space. These complex robots require specialised personnel to program and maintain them, and that is simply too expensive, with a payback period that is too long to justify the investment.

A new generation of collaborative robots (or “cobots”) is changing the game for smaller manufacturers, helping them compete more effectively, offering new opportunities for employees, and even improving worker safety. Darrell Adams, Head of Southeast Asia & Oceania, Universal Robots, shares 5 essential requirements that will put robotics within SME’s reach.

  1. Quick set-up

Setting up a conventional industrial robot can take days or even weeks. These are the time and disruption that SMEs simply cannot afford. When ready to automate, manufacturers or any untrained operator need to be able to unpack the new robot, mount it, and begin programming simple tasks in a matter of hours. Collaborative robot arms, such as those from Universal Robots (UR), weigh as little as 11 kg, and can be set up in less than a day.

  1. Improving the small business culture

Most SMEs operates with 50 to 250 employees, having a shared sense of culture among the small group of employees is important for SMEs. Businesses run best when employees enjoy their assigned jobs, encouraging productivity and efficiency. Having cobots to automate the monotonous and strenuous tasks give employees more freedom to take on better and more exciting roles. SMEs need not worry about releasing these employees as no robots can replace human creativity and critical thinking. Instead, SMEs are elevating employees’ job titles by retraining employees to work alongside robots.

PT JVC Electronics Indonesia (JEIN), a global leader in electronic and entertainment products, deployed seven units of Universal Robots’ UR3 cobots to increase productivity and achieve consistent quality. The adoption of UR3 lessened the burden on workers to perform menial and repetitive tasks. JEIN witnessed an improvement in production efficiency and stable quality of output. With the move towards automation, employees can be redeployed to other processes and operational costs were reduced by more than USD 80,000 yearly. With cobots working alongside humans, it helps to humanise labour, establishing a better company culture.

  1. Collaborative and safe

Conventional industrial robots require a large, separate enclosure, which adds cost, takes up operational space, and reduces flexibility on the production floor. Management also has to be concerned with the safety risk if someone manages to get inside the enclosure while the robot is activated.

However, small manufacturers cannot afford to dedicate large areas to robotic operation. Today’s collaborative robots can work side-by-side with human workers in complementary operations. For example, the innovative force-sensing technology built into UR robots means the robot stops operating if it comes into contact with a human, and 80 per cent of the thousands of UR robots in operation worldwide work right beside human operators with no safety guarding (upon risk assessment).

4. Flexible deployment for multiple uses

Dedicated industrial robots can limit small and mid-sized manufacturers who often have small production batches and require fast change-overs. In contrast, new collaborative robots are lightweight, space-saving, and easy to redeploy to multiple locations without changing the production layout. With the ability to reuse programs for recurring tasks, they support agile manufacturing processes with minimal set-up time and effort.

  1. Fast payback of your investment

Of course, any automation investment for a small or mid-sized manufacturer must pay for itself as quickly as possible. Universal Robots gives SMEs all the advantages of advanced robotic automation, with none of the traditional added costs associated with robot programming, set up, and dedicated, shielded work cells. With an average payback period as short as twelve months, robotic automation is finally affordable for small and mid-sized manufacturers.

Universal Robots believes that collaborative technology can be used to benefit all aspects of task-based businesses, regardless of their size. The nominal investment costs can be quickly recovered, such benefits from the latest collaborative technology should be available to all businesses.

By: Darrell Adams, Head of Southeast Asia & Oceania, Universal Robots

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

5 Reasons Why You Need Collaborative Automation For Today’s World

Mazda And Toyota Joint Venture Commits Additional $830 Million To Cutting-Edge Manufacturing Technologies

Industry 5.0: The Future Of Manufacturing In 2035

3D Laser Vision Systems For Industrial Welding Robots

Impact of COVID-19 And How The Crisis Is Shaping Universal Robots

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

‘Silver’ Welders To Surf The Industrial 4.0 Wave With Collaborative Robots

‘Silver’ Welders to Surf the Industrial 4.0 Wave with Collaborative Robots

In industries facing a grave shortfall of skilled welders, collaborative robots, or cobots, can provide the much needed relief to keep up productivity and production, while retaining existing human workforce as well. By Darrell Adams, Universal Robots

There is a global labour shortage in the welding scene today. Business leaders are struggling to find skilled welders, while traditional industrial welding robots are expensive and challenging to adapt to transient and iterative production runs.

The average age of a welder in the United States today is about 55 years old, with fewer than 20 percent under the age of 35, and is slated to run into a deficit of 400,000 welders by 2024, according to a study by the American Welding Society.

And North America is not even the dominant market for welding. That crown goes to Asia Pacific, with a market size of US$7.04B in 2019, according to Fortune Business Insights, with a sizable demand from construction, automotive steel, and marine industries. Asia Pacific is likely to run into a deficit for skilled welders like America, with declining birth rates as the key culprit.

Already, countries such as Japan, Taiwan, and South Korea are facing this problem. For example, by 2060, 40 percent of Japanese population will be over the age of 65, according to a report by The Guardian, and their workforce will be unable to handle the nation’s industrial and economic demands. And that is where automation comes in, including welding.

Embracing Cobots to Retain Staff

Traditionally, robots and automation may be perceived to be a bane to human livelihoods. However, there is a class of robots, known as collaborative robots (cobots), that work nicely alongside humans.

In industries facing a grave shortfall of skilled welders, cobots can provide the much needed relief to keep up productivity and production, while retaining existing human workforce as well.

Unlike larger industrial robots, cobots are nimble and small, much more affordable compared to large industrial robots, and are easy to set up and operate. In the case of Universal Robots’ cobots, they are quick and easy to commission in-house for simple tasks without any expertise in robotics or programming. For more complex applications, Univeral Robots has a comprehensive network of Certified Systems Integrators and Authorised Training Centres that will help businesses get started so that human operators without prior programming experience or knowledge can handle day-to-day operations after the initial installation.

For example, the Vectis Cobot Welding Tool powered by Universal Robots’ UR10e cobot allows human operators to easily and safely design and deploy automated welding jobs. Welders can transition rather easily to become cobot-based welding operators.

“We wanted to build our cobot-based welder on this platform, providing a human-centric and welder-friendly operating ethos, that manufacturers in many other industry verticals enjoy,” says Josh Pawley, director of business development and co-founder of Vectis Automation.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Universal Robots Declares “National Cobot Awareness Month” In January

Universal Robots Future-Proofs Production Processes In Southeast Asia With Collaborative Robots

Industry 5.0: The Future Of Manufacturing In 2035

New Update For Hypertherm Robotmaster Robotic Software

Cobots – Revolutionising Businesses in Southeast Asia

Global Robotics Technology Market to Top $170B by 2027

Automation Trends in Metalworking

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

From Users For Users

From Users for Users

Here’s how one company was able to scan large and very heavy parts from all four sides and from above, without having to laboriously move the piece. Article by ZEISS.

When a robot grasps a cylinder block weighing 50 kilos and approaches a saw or milling cutter, any vibration or sliding motion must be avoided. But deviations from target production data make it difficult for the robots to grasp. August Mössner GmbH & Co. KG, which manufactures specialised machinery for the foundry and aluminium industries along with saws for the widest possible variety of materials as well as equipment for the dismantling of nuclear power stations, has found a solution for this problem. As well as tailor-made manipulators for robots manufactured with the aid of the ZEISS T SCAN, the programming of the equipment is optimised with flexible laser scanning.

Christian Kunz (right) and Christian Haase inspect the grippers of a robot. They are to hold heavy motor castings to the processing stations later on, which protrude from the wall on the right.

The two robot arms rigidly stretch their necks into the air, their movements appear frozen. One of them holds a cylinder block in suspension, weighing at least 50 kilos. Only in a few weeks’ time, when the entire plant has been completed, will they start moving and saw off disturbing feeder and sprue systems and mill off casting flashes on engine blocks coming from a foundry. To do this, they heave the parts to saws and milling machines that protrude from the wall and look like giant dentist drills.

Here at August Mössner in Eschach is not where they will be put to work, however, but rather at engine plants of well-known automobile manufacturers. The processing stations are designed and put into trial operation at August Mössner, which has a reputation in the automotive industry for delivering automated production lines with dozens of robots on schedule and perfectly functional.

Deviations of Several Millimetres

Christian Kunz is the Head of Robotics, R&D, at August Mössner. His team plays an important role when it comes to deviations. The 20 employees of his robotics, research and development department are responsible for planning the precise, safe and efficient operation of the processing lines. 

But the devil is in the details. One of these details are the contour parts with which the robots grip the cylinder block. They are as small as a hockey puck, but must be able to grip the casting precisely and hold it in position during processing, against the forces that occur. For this purpose, the contour parts have recesses that fit exactly over the bulges of the castings. However, this is initially not the case.

Kunz holds a contour part to the rough casting of a gearbox-housing, at the point where the robot is later to pick up the component. But no matter how the mechatronic engineer turns and tilts the fitting, the parts do not fit together. “When car manufacturers send us castings, they often deviate from the target design by a few millimetres,” explains Kunz.

This is no wonder, since most of them are so-called start-up parts for new engine types.

The tolerances are still large when series production starts and are not shown in the CAD models of the castings. Kunz and his team have found a solution in which ZEISS T-SCAN is of central importance. Using a hand-held laser scanner, the engineers measure the surface contour of the casting—for example, of an engine block or a transmission housing—and compare the data set generated by this with the target CAD data supplied by the car manufacturer. On the one hand, this serves to document the actual state and on the other hand, the measurement is the basis for adapting the contour parts to the casting and for subsequent programming of the robot. In this way, the engineers can quickly see where there are deviations and can immediately initiate reworking of the contour parts. The contour part is reworked by hand, then scanned and can thus be documented and converted into CAD data.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

The Global Aluminium Castings Market To Grow By US$32.1 Million Despite The Pandemic

Sandvik Coromant Joins Forces With Microsoft To Shape The Future Of Manufacturing

Round-the-Clock Environment Disinfection With SESTO Autonomous Mobile Disinfectant Robot

5G Integration In IIoT Systems Accelerates Industry 4.0 In The Wake Of Pandemic

Six Factors That Have Changed Bending Automation

Automation Trends in Metalworking

Focus On Reliability

3D Technologies: Not Out Of Our League

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

KUKA Webinar: Embracing Robotic Application In Boosting APEC Economic Performance

KUKA Webinar: Embracing Robotic Application In Boosting APEC Economic Performance

In collaboration with Netherlands-Thai Chambers of Commerce (NTCC), KUKA is hosting a webinar as part of the NTCC Industry 4.0 series: “Embracing Robotic Applications in Boosting Economic Performance within APeC” on Wednesday 30 September 2020 from 16:00 – 17:15 (ICT).

This sharing session will emphasise on Industry 4.0 and Smart Manufacturing, Market Intelligence for Robotics and Trends for APeC countries, including case studies, opportunities and challenges. Guest speakers include; Mr. Alan Fam, Chief Regional Officer of KUKA Robotics – APeC, Mr. Neoh Sin Joo, Regional Sales Director of KUKA Robotics – APeC, and Mr. Tawiwat Reongpunyaroj, Chief Executive Officer of KUKA Thailand & Vietnam.

Event details

Date: Wednesday 30 September 2020

Time: 16:00 – 17:15 (ICT)

Platform: Zoom (webinar link will be sent to you after registration is completed.)

Register for this free webinar now!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Taiwan Excellence To Introduce Advanced Smart Machinery Solutions From Taiwan In Online Press Conference

Siemens on Automotive Manufacturing Trends, E-Vehicles, COVID-19, and VinFast

Industry 5.0: The Future Of Manufacturing In 2035

Empowering Manufacturing Transformation

Trumpf Increases Sales To 3.6 Billion Euros

Process Efficiency in Focus

Intelligent Use Of Non-Productive Time

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

The Future Of Manufacturing: Impactful Tech On The Horizon

The Future of Manufacturing: Impactful Tech on the Horizon

The future of manufacturing is brimming with opportunity—it is full of new technologies designed to reduce waste and maximise process efficiency and flexibility through software and hardware capabilities. Article by Rahav Madvil, Simulation Product Manager for Siemens Digital Industries Software, and Noam Ribon, Senior Business Consultant at Siemens Digital Industries Software.

Industrial manufacturing as a sector has been an early adopter of robotics and other forms of technological improvements for decades. Robotics have been one of the best options to increase production efficiency for large and often highly repetitive manufacturing processes. But the era of producing large quantities of just a few products with low mix is coming to an end, giving way to increased product personalisation requiring a more flexible production process with less waste than ever before.

Fortunately, the future of manufacturing is brimming with opportunity. It is full of new technologies designed to reduce waste and maximise process efficiency and flexibility through software and hardware capabilities. Almost all of this promise is built upon a foundation of digital transformation – and the digital twin. Everything from raw material tracking to process optimisations to hardware selection stem from insights gained from the digital twin and a closed-loop optimisation of entire facilities.

The most difficult aspect of any change to operation are the inevitable changes to process—they are expensive twice over, because nothing is being produced and resources are still being consumed. An autonomous transport initiative squarely addresses this, relying on a few, key technologies to make it happen.

The Power of Virtual Commissioning

Creating a comprehensive digital twin of your production process can greatly reduce downtime for new machines, new processes and new products.  Let’s say you need to install a new CNC station. What if the processes for this new machine could be validated before it ever arrived on the production floor by using the digital twin of the production line? Less time could be spent integrating the new component into the overall production lines through line integration as a part of virtual commissioning.  Available today, virtual commissioning is the critical underpinning to an efficient production environment enabling a closed-loop iterative optimisation of the entire facility.

Virtual commissioning is vital, not only for testing software controls, but for adding insight to the efficiency of the controls strategy. It is also essential for embarking on the advanced robotics journey, laying the groundwork for implementing greater process automation and flexibility needed to efficiently implement tomorrow’s manufacturing technologies today.

Simulate Everything Upfront

One of the best options to minimise risk when updating an existing process or making a new one is to simulate the new operations. It nearly eliminates upfront investment in machinery before knowing whether the new process will operate as expected on the shop floor. For new digitalisation efforts, this is where a digital twin should be established for the process. Without a comprehensive study of the actions within a plant new equipment could be under-utilised leading to lost investment.

Just as important is the implementation of IoT devices, that serve to close the loop between the digital twin and the physical processes once the new processes have been initiated. Although these devices are often embedded in new production equipment, but it is important to consider how to best maximise the voluminous data they generate to gain crucial insight into the production process.

Next Generation Programming

Another route to maximising production time even when supporting a high product mix is to expedite the reprogramming of the robotics in use on the factory floor. Without integrated robotic control, updating a robotic arm for a new task can be incredibly time-consuming. It needs to be taken offline, reprogrammed, validated and restarted, for each robot that will handle the new processes.

In a partnership between AtriMinds and B/S/H/, Siemens Digital Industries Software helped bring flexibility to robotic arms by enabling automation for flexible products.

Siemens Digital Industries Software bring flexibility to robotic arms by enabling automation for flexible products.

All that changes by integrating the programmable logic controllers for these robots into the comprehensive digital twin. Much of this process can be streamlined. Does a bolt spacing on a phone need to be shifted slightly to accommodate the latest 5G wireless antenna? If the entire fleet of robots working on that production line could understand the change, that would save many hours across multiple engineering and production teams. Engineers simply need to let the robots know of the change and any differences in manufacturing tolerances can be accounted for with closed loop sensing through visual or force feedback. With force feedback within the robotic arm, any force exerted over a defined threshold can initiate a pause to the robotic arm’s actions and readjust positioning to address the perceived problem.  Instead of shutting them down for reprogramming, all the robots working on the project can adjust independently to subtle changes.

Although this might sound like some futuristic scenario, task-based programming has already been tested in the real world. In a partnership between AtriMinds and B/S/H/, Siemens Digital Industries Software helped bring flexibility to robotic arms by enabling automation for flexible products. Previously, one of the largest hurdles to automating assembly was how to work with flexible components. Traditional robotics rigidly follow predefined movements, so if something were to inadvertently shift, the whole assembly could be destroyed. But by implementing force sensing on the robotic arms, there is an almost intuitive understanding of the parts and how the robot is interacting with the workpiece at its station. If a hole is slightly out of place on a panel, the input from force sensors can help the robot redirect its movement and thread a screw through without complex, preprogrammed instructions for misalignment scenarios.

Optimising Production with Autonomous Robotics

Simulation, virtual commissioning and advanced robotics programming lay the foundation for a fully flexible production floor, but automated guided vehicles (AGVs) and autonomous mobile robots (AMRs) weave it all together and bring it to life. Historically, conveyor belts acted as the material flow paths on a shop floor. They efficiently move product from point A to point B but require semi-static positioning. Even mobile conveyor systems, common in logistics work, take time to move and to ensure a safe path for product.

Heatmap from simulating AGV and AMR activity on a manufacturing floor.

In contrast, AGVs and AMRs can change their path during transit. This saves time that would have been spent readjusting existing features, this is critical for a flexible production environment. Imagine a production floor, making two distinct version of a product. For version one, the bolts need to be added before the secondary assembly is added, while in version two bolts cannot be added until after the sub-assembly has been mounted. In a static conveyor facility, this could be completed given enough conveyor length and a sorting mechanism. Beyond a couple variations to the production sequence the factory would fill up with conveyor loops that only transport a few products at a time, defeating one of the  main goals of the technology But with a fleet of AGVs or AMRs moving materials and work pieces throughout the facility, products can be rerouted and the sequence reordered to another machine. Or, in the case of highly customised consumer products, components could be routed to the best machine for the task. It can account for how much time is required to switch over to the new process, how many units can it produce compared to other machines, and even the impact of a re-route on other processes on the shop floor.

Reaping the Benefits of Tomorrow’s Robotics Today

Achieving all this requires a highly integrated production process. To guarantee a product is still made correctly during an automated process change, it needs to be simulated beforehand using a digital twin. To certify the product can be made in the new location, the production machine needs to be validated for the task using virtual commissioning. And to ensure the slightly different parts don’t produce errors in the process, the machines themselves need to be flexible to adapt to in real time to changing conditions with AGVs and AMRs.

Properly managing all these variables can have an incredibly positive effect on process performance, in fact it can produce up to a 40 percent improvement in labour productivity, according to a 2020 McKinsey study. Understanding the shop floor is an invaluable proposition and will continue to net savings and improvements through the life of the facility, even making it last longer by reducing maintenance overhead and costs with the improved condition monitoring of extensive IoT and the comprehensive digital twin.

Learn more of how Tecnomatix brings the tools of tomorrow’s factories to the factories of today with Siemens’ Xcelerator portfolio with free trials for the Process Simulate and Plant Simulate tools.

 

Check these articles out:

Would You Trust The Algorithm?

Ensuring Manufacturing Safety Using Digitalised Production Design

Empowering Manufacturing Transformation

Siemens Workplace Distancing Solution Helps Manage ‘Next Normal’ Manufacturing

Siemens Connects Healthcare Providers And Medical Designers To Produce Components Through AM

[WATCH] Siemens Discusses Initiatives, Outlook Amid COVID-19

Siemens Improves 3D Printing And Scanning Workflows

ABI Research Names Siemens A Leader In Manufacturing Simulation Software

Siemens Opens Additive Manufacturing Network

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

New Update For Hypertherm Robotmaster Robotic Software

New Update For Hypertherm Robotmaster Robotic Software

Hypertherm has released the Robotmaster Version 7.3 offline robot programming software with extensive features and enhancements designed to further simplify robotic programming.

Additions found in V7.3 include:

  • Support for the newest CAD file types, 3D printing software, and third-party plugs-in for software brands such as CATIA, SolidWorks, Autodesk Inventor, Siemens, Solid Edge, AutoCAD, Pro-E/Creo, Rhino, and more.
  • Performance improvements for faster data processing and robot code output when creating additive manufacturing paths in addition to post processor enhancements for major robot brands such as Kuka, ABB, and Fanuc.
  • The addition of new modules including a spray simulation module for companies who use robots to spray, coat, or paint products as well as a module that simulates material deposition during additive manufacturing, adhesive dispensing, welding, and similar applications.
  • Numerous productivity enhancements to existing modules for more accurate time estimates, the ability to quickly import g-code from 3D slicing software including Cura and Slic3r, and the ability to automatically set a cutting direction based on material location with respect to the path.
  • Notable enhancements to the path import module providing users with an option to read custom instructions and set process activations and deactivations directly from imported code and enjoy a more accurate interaction, process simulation, and robot code output for both g-code and APT formats.

“The many new features found in V7.3 are based on close work with many of our current customers to understand how we can further streamline offline robotic programming,” explains Garen Cakmak, leader of Hypertherm’s Robotic Software Team.

“By adding support for more software types, files, and robots, we are helping customers solve sometimes complex challenges quickly and easily.”

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Robots On Subscription: RaaS Model In The APAC Region

Siemens Expands PLM Portfolio With New SaaS Offering

Two Industry Veterans to Lead FARO’s Global Hardware, Software R&D Teams

3D Printing Metal Market To Be Worth $5.51 Billion By 2027

Ultimaker’s New Software Solution Helps Overcome Barriers In AM Adoption

Schunk Releases Robot Deburring Tool

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

How To Quickly, Easily And Automatically Measure Radii And Defects

How to Quickly, Easily and Automatically Measure Radii and Defects

Highly specialised aerospace engine components such as turbine blades and discs or blisks involve a number of metrological challenges. Here’s how MTU Aero Engines are addressing them all. Article by Bruker Alicona.

The automatic measurement and evaluation of radii, chamfers and break edge on turbine engine components is one of many criteria in modern quality assurance at MTU Aero Engines. Currently three Cobot systems from Bruker Alicona are in use for break edge measurement. On top, the optical measuring solutions replace labor intensive replica techniques and tactile methods in defect measurement.

“If there’s a burr, this could become a danger point in the engine,” says Michael Duffek, inspection planner at MTU Aero Engines, and also responsible for quality assurance of turbine engine components. For the company, automated measurement and evaluation of edges, radii and chamfers of engine components is an important part of modern, state-of-the-art measurement technology.

Highly specialized components such as turbine blades, turbine discs or blisks (blade integrated disk) are measured, and they involve a number of metrological challenges. These include, for example, the complex geometry with steep flanks as well as varying reflection properties of the components. Different surface reflections occur due to varying manufacturing processes, as surfaces to be measured are either coated, and thus matt, or ground, and thus highly reflective.

For a suitable measuring system, this means that it must not only offer the required automation options including standard-compliant evaluation, but must also be able to measure complex, difficult-to-access geometries with tight tolerances and matt to reflective surfaces in high resolution and repeatability. A further requirement is the integration into a production process including integration into the existing IT environment.

“And the whole thing has to be fast and straightforward,” Duffek says. As a result, there are now 15 Bruker Alicona measurement systems in use at MTU locations worldwide, 11 of which are located at the test centers of the German headquarters in Munich. This is also where the automated measurement of turbine engine components takes place, which are implemented with measuring equipment from the Bruker Alicona Cobot line.

Combine an Optical 3D Sensor with a Collaborative Robot

Cobots are a combination of a collaborative 6-axis robot and a high-resolution optical 3D measurement sensor to be used for the automatic inspection of microgeometries on large components. In the aerospace industry, the measurement of deburred edges, also known as “break edge measurement”, on turbine disks and turbine housings are the most common applications. Bruker Alicona Cobots have been available on the market since 2017, and even then “nothing comparable has existed, at least we are not aware of any system. What the Cobot already offered three years ago at the market launch was unique. All the other manufacturers we evaluated would have had to start at the development stage,” Duffek recalls. He is now a ‘Cobot expert’ because under his leadership, three systems for the automated measurement of edges, radii and defects are currently in use in Munich.

To continue reading this article, head on over to our Ebook!

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Integrated Quality Control Of Turbine Blades In An Automated Production Cell

FARO Launches Latest 3D Portable Gage CMM

CMM With Mass Technology: Versatility In Focus

API and COORD3 Partners For Industrial 3D Metrology Solutions

TÜV SÜD PSB Signs MoU With NUS For Medical Device Additive Manufacturing

Multi-Sensor CMM For Turbine Blades

3D Scanning Prevents Production Downtimes

Renishaw’s XM-60 Offers Easy Alignment For Stage Builders

 

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

Industrial Robots VS Cobots—Which Is Right For You?

Industrial Robots VS Cobots—Which Is Right For You?

Industrial robots have offered benefits to many organisations ever since it was first introduced, but collaborative robots (cobots) have been a game-changing force recently. Article by Darrell Adams, Head of Southeast Asia & Oceania, Universal Robots.

Cobots made automation accessible and affordable for many organisations for whom traditional robotics were out of reach. But automating appropriately means evaluating your specific situation to make the best choice. The industry is changing rapidly, and new robotic capabilities are blurring the lines between collaborative and industrial robots. Now, manufacturers must determine whether an industrial robot or cobot is best suited for the job.

Robots and cobots: The key differences

The simplest way to understand how cobots and industrial robots differ is that cobots are designed to work alongside human employees, while industrial robots do work in place of those employees. A cobot can assist employees with work that may be too dangerous, strenuous, or tedious for them to accomplish on their own, creating a safer, more efficient workplace without eliminating factory jobs involved in the actual fabrication of a product. By contrast, industrial robots are used to automate the manufacturing process almost entirely without human help on the manufacturing floor. This, in turn, frees up employees for more meaningful tasks that are less mundane and are less prone to repetitive motion injuries.

Cobots are also easily programmable as compared to industrial robots because of cobots “learning” capability on the job. A factory worker can re-program a cobot simply by moving the arm along the desired trajectory. From there, the cobot will “remember” the new movement and be able to repeat it on its own. Industrial robots cannot be so easily reprogrammed and require a programmer to write new code for any changes in the process to be implemented.

Industrial robots can handle heavier, larger materials like those used in automotive manufacturing, but also require safety cages to keep humans out of the workspace. However, cobots are designed to work in close proximity to humans, they are safe enough to function around people and do not require the same kinds of safety infrastructure industrial robots do (upon risk assessment).

Common Manufacturing Industry Misconceptions

Robots have a lot going for them in terms of reducing safety risks to employees, improving efficiency, and cutting overhead costs, but unfortunately, there are several misunderstandings about the best solution to incorporate robotics. For example, purchasers occasionally expect their cobots to replace low-skilled factory workers entirely or take on heavy manufacturing tasks best suited for an industrial robot. Cobots are specifically designed to work in conjunction with human workers and perform best as a minimally disruptive solution to safety concerns and efficiency inhibitors. Cobots have so much greater potential to revolutionise manufacturing when implemented correctly.

Another area that brings confusion is in regard to customisation options and costs. Cobots and industrial robots can both be customised, but due to their size and differences in capacity and application, one should not expect the cost or engineering required for both machines to be analogous. Some cobot brands have customisable pre-engineered designs that reduce the cost and time necessary for tailoring an automated solution to the application, however, some operations will inevitably benefit more from greater levels of customisation. Industrial robots are also available in both custom and standard models depending on the application, and these larger and more complex robots have a proportionate cost associated with them. Cost and the necessary engineering involved is entirely dependent on the needs of the customer, and being open to a wide array of solutions is the best approach to robotics.

Robotics is a considerable investment for businesses. There are arguments for both industrial robots and cobots. Although the truth is that there is a steady shift from robots to cobots, but both machines remain significant in different factory floors. Manufacturers need to understand the differences between both machines and select one based on their application needs. There is space on the market for both robots and cobots but the power lies in one’s requirement.

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Are Cheaper CNC Machine Tools More Cost Effective?

Accelerating the Journey to Series Production

3D Imaging Sensors And Hardware Subsystem Market To Hit US$57.9 Billion By 2025

3D Printing Metal Market To Be Worth $5.51 Billion By 2027

TRUMPF And STMicroelectronics Partners For UWB Positioning Technology

5 Reasons Why You Need Collaborative Automation For Today’s World

Marvel Of Robotic Arms

What Makes Smart Factories “Smart”?

New Mounting Clamps For Cobots

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top