skip to Main Content
Heraeus AMLOY, Trumpf Open Door To Industrial 3D Printing Of Amorphous Metals

Heraeus AMLOY, Trumpf Open Door To Industrial 3D Printing Of Amorphous Metals

Heraeus AMLOY and Trumpf have started working together on the 3D printing of amorphous metals, also known as metallic glasses, with the aim of establishing the printing of amorphous parts as a standard production method on the shop floor by improving process and cost efficiencies.

Amorphous metals are twice as strong as steel, yet significantly lighter and more elastic. They exhibit isotropic behaviour, which means their material properties remain identical, regardless of the direction in which the 3D printer builds up the workpiece. In addition to creating highly robust parts, 3D printing also gives engineers more freedom in the design process. A number of areas could benefit from 3D printing of amorphous metals. Key examples include parts that are subject to significant stresses and lightweight design in sectors such as aerospace and mechanical engineering. These materials are also an excellent choice for medical devices due to their biocompatibility.

“3D printing of amorphous components in industry is still in its infancy. This new collaboration will help us speed up printing processes and improve surface quality, ultimately cutting costs for customers. This will make the technology more suitable for a wider range of applications, some of which will be completely new,” said Jürgen Wachter, head of the Heraeus AMLOY business unit.

“Amorphous metals hold potential for numerous industries. For example, they can be used in medical devices – one of the most important industries for additive manufacturing. That’s why we believe this collaboration is such a great opportunity to make even more inroads into this key market with our industrial 3D printing systems,” said Klaus Parey, managing director Trumpf Additive Manufacturing.

READ: Trumpf Enters The World Of Automated Arc Welding

READ: Trumpf Enables Automated Removal, Stacking of Parts

The new TruPrint 2000 3D printer from TRUMPF is the ideal choice for printing amorphous metals from Heraeus AMLOY.

The new TruPrint 2000 3D printer from Trumpf is the ideal choice for printing amorphous metals from Heraeus AMLOY.

Amorphous metals are formed by cooling molten metal extremely quickly. A 3D printer can then build them into larger, more complex parts—something that other methods are unable to do. This opens the door to new industrial applications for amorphous metals. 3D printing also exploits the considerable potential that amorphous metals hold for lightweight design. A 3D printer only builds structures that actually help a part fulfil its function, so material use and weight are kept to a minimum. For their part, amorphous metals are very light by nature, so the combination of 3D printing and amorphous metals can reduce weight in all sorts of applications. 3D printing makes the production of amorphous parts faster and simpler in a wide range of contexts. The technology enables users to build parts in one piece instead of making components one by one and then assembling them into a finished part.

In this cooperation, Heraeus AMLOY combines its expertise in the production and processing of amorphous metals with Trumpf’s experience in additive manufacturing. Heraeus AMLOY has optimized its amorphous alloys for 3D printing and tailored the material for use with Trumpf’s TruPrint systems. The latest-generation TruPrint 2000 machine is a particularly good choice for printing amorphous metals. The machine is designed in such a way that the excess powder can be prepared in an inert gas environment for the subsequent building process. This protects the powder from any adverse influences. This is a key benefit for amorphous metals because they react so quickly with oxygen. Trumpf has also boosted the productivity of the TruPrint 2000. Two 300-watt lasers scan the machine’s entire build chamber in parallel. Using a laser focal diameter of just 55 micrometers, users can carry out both low and high-volume production of amorphous parts with extremely high surface quality. The “Melt Pool Monitoring” function automatically monitors the quality of the melt pool, so any errors in the process are spotted at an early stage.

Customers that already have a Trumpf 3D printer can now use it to process zirconium-based alloys from Heraeus AMLOY. It is also possible to order 3D-printed amorphous parts directly from Heraeus AMLOY. The two partners are also hoping to make copper- and titanium-based alloys available for 3D printing in the future.

 

For more exclusive news and information, visit www.equipment-news.com.

 

Check these articles out:

Punching Machine Adaptability: Room to Grow

BrightLine Weld – A Revolution In Laser Welding

Nissin Electric To Move Production From Thailand And Vietnam To Myanmar

Outlook For Welding And Cutting Equipment Market

PTG Introduces Powerstir Dual Weld-Head Friction Stir Welding For Electric Vehicle OEMs

Coherent Launches Turnkey Solution for Precision Metal Parts Welding

Hypertherm: FlushCut Consumables

Faster Robot Programming With Hypertherm Robotmaster Version 7.2

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Trumpf Enters The World Of Automated Arc Welding

Trumpf Enters The World Of Automated Arc Welding

Trumpf has released its first automated arc welding system. The TruArc Weld 1000 comes with a collaborative robot known as a “cobot”. After the operator has manually guided it over a component, the cobot then automatically carries out the weld. It is significantly more efficient than would be possible manually. With the new system, Trumpf is responding to the increasing lack of skilled workers and helps fabricators get started with automated welding. CE-compliant and approved by TÜV Austria, the TruArc Weld 1000 meets the very highest safety standards.

Unlike conventional industrial robots, operators can interact with the cobot, guiding it over the part by hand. A built-in sensor ensures it responds smoothly. Trumpf has equipped the cobot with an operating unit. This lets users store the weld path’s start and end points as well as intermediate waypoints in order to create the program. Furthermore, the cobot control system includes templates for welding programs and parameters that cover scenarios such as different sheet thicknesses. Combined with the operating unit on the welding torch, this greatly simplifies the task of programming the robot. This enables users to program and weld with the TruArc Weld 1000 within minutes. Next to no previous experience is needed handling the system.

READ: Trumpf Enables Automated Removal, Stacking of Parts

READ: BrightLine Weld – A Revolution In Laser Welding

Small batches, great results

The TruArc Weld 1000 offers an automated alternative for many parts that users would normally weld by hand. Thanks to the rapid programming, fabricators have an affordable means of tackling short production runs and one-off pieces, even if the parts only require a short weld seam. The TruArc Weld 1000 produces reproducibly straight and even seams, prevents spatter and offers very high machining quality.

Inside the TruArc Weld 1000 is a partition that can be raised and lowered. This allows users to divide up the working area and choose between welding one large part (single-station operation) or several smaller ones (two-station operation). In single-station operation, the robot can weld parts measuring up to 2000 x 600 x 600 millimeters. Other ratios of width to length are also possible depending on part dimensions. In two-station operation, the TruArc Weld 1000 can process smaller parts measuring up to 600 x 600 x 600 millimeters. To ensure it can easily reach both stations, the robot travels between two positions along a linear axis. While it is busy welding on one side, the operator can use the time to set up a part on the other side. The robot program can be transferred automatically from one station to the other.

Ready to go with no training required

Customers can carry out commissioning of the CE-compliant TruArc Weld 1000 themselves within a few hours using the dedicated video tutorials. From the wire coil to the welding parameters, the system comes with everything you need to get started with the welding process. No classroom training is required for machine operators. The video tutorials contain all the information required to quickly learn how to operate and program the machine.

 

For more exclusive news and information, visit www.equipment-news.com.

 

Check these articles out:

Punching Machine Adaptability: Room to Grow

BrightLine Weld – A Revolution In Laser Welding

Nissin Electric To Move Production From Thailand And Vietnam To Myanmar

Outlook For Welding And Cutting Equipment Market

PTG Introduces Powerstir Dual Weld-Head Friction Stir Welding For Electric Vehicle OEMs

Coherent Launches Turnkey Solution for Precision Metal Parts Welding

Hypertherm: FlushCut Consumables

Faster Robot Programming With Hypertherm Robotmaster Version 7.2

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Electric Motor ‘Hairpin’ Processing Using Laser

Electric Motor ‘Hairpin’ Processing Using Laser

Laser technology provides a high level of flexibility and quality when processing hairpins for the electric motors. Article by TRUMPF.

(Above, left) Hairpin with PAI coating after blast off process. High edge quality and low pulse overlap as well as line overlap. (Above, right) A row of single pulses. (Bottom) Surface after ablation with blast off process. Single spots are visible. This can be reduced by using repetitions with a higher frequency and higher line overlap after decoating.

Nowadays, manufacturers of electric motors are also looking for more productive processes for volume quantities, with the same high-quality requirements when it comes to the welding result. An important impetus here is achieving a higher degree of automation to be able to produce higher quantities.

One method in the construction of stators has therefore largely prevailed: Instead of winding copper wire around the individual stator grooves, as was often the case before, manufacturers have started embedding rectangular copper rods—called “hairpins” due to their shape—into the entire groove using compressed air. The typical edge lengths of the rectangular cross section of the hairpins is between 2 and 4 mm. The process achieves higher process speeds and can easily be automated. As the hairpins are stiffer than round wires, their alignment in the motor can be better controlled. The larger fill factor also results in a higher thermal load capacity, and higher motor power.

The copper rods are coated with an insulating layer, which requires ablation at both ends locally—called hairpin stripping—to enable contacting. Pulsed laser processing is suitable here to strip the hairpins. Compared to mechanical processes, such as planing and milling, laser processing is up to 80 percent more productive. Once the hairpins have been embedded in the grooves, protruding ends on the top and bottom of the stator are twisted together using a fixture (necking) or fixed in place, and then welded for contacting. The ends are not always ideally aligned to each other, however. If you use automated remote welding, a camera-based sensor system integrated in the laser optics helps achieve a reliable and reproducible result, and therefore the highest possible current flow.

Stripping of Hairpins

Common insulating layers for copper hairpins are polyamide-imides (PAI), polyether ether ketone (PEEK), and polyamide-imides with polyimide foil (PAI+FEP).

In the past, PAI coatings were almost exclusively prevalent in the industry, but we are now seeing a tendency towards a steady increase in PEEK and PAI+FEP. However, PAI coatings still have, and are likely to have in the future, the largest share by far.

All of these insulation coatings can be burnt away from the copper quickly and in a targeted manner using laser pulse processing. The laser light couples into the insulating layer, heats it up, and burns it off. PEEK behaves as a volume absorber for laser light, anyway; for PAI and PAI+FEP, it is recommended that the first run over is used to carbonize the material in order to increase the absorption. The copper discolours due to the heat influence during laser ablation. This is not relevant for the further processing, however, as the structure of the copper is not changed. Burrs also form at the boundaries to the coated copper, which, in unfavourable circumstances, could lead to the burr becoming stuck on a surrounding component or fixture. The formation of burrs and edges can be optimized, however, through reworking using another femtosecond-pulsed laser.

Hairpin stripping can be done with different types of TRUMPF ns laser. Most common is the TruMicro 7000 series with a laser power of up to 2 kW (pulse energy 100 mJ) at a pulse repetition rate of 5 to 250 kHz and a pulse duration of 30 ns.

There are two stripping processes for the hairpins depending on the coating type: 

  • For coatings which are transparent to the laser a “blast off” process can be used. 
  • For non-transparent coatings an evaporation process is needed. 

Click here to read the full version of the article in the April 2020 issue of Asia Pacific Metalworking Equipment News.

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

NUM Launches Form Compensation Option For NUMROTO Tool Grinding Software

AMADA WELD TECH Announces New Company Name

Fibre Laser or CO2 Laser—Which Will Prevail?

Fight Against Corona: TRUMPF Retrofits Mini-Lasers For Ventilators

Hexagon Releases Complete Solution For Laser Scanning On The Machine Tool

Amada Miyachi Europe: MM-L300A Laser Weld Monitor

TRUMPF Benefits From E-Mobility

Making the Industry More Sustainable with the Circular Economy

Helping You Address The New Electro-Mobility Challenge

 

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Fight Against Corona: TRUMPF Retrofits Mini-Lasers For Ventilators

Fight Against Corona: TRUMPF Retrofits Mini-Lasers For Ventilators

In the fight against the lung disease Covid-19 high-tech company TRUMPF retrofits Laser diodes which usually come to play in industrial fields.

The mini-Lasers are so far being used to measure the amount of oxygen while refueling planes or in petrochemistry. There, they measure the air composition in order to prevent explosions. Now, they are supposed to be incorporated into oxygen sensors for ventilators.

READ: HP Inc. And Partners Battles COVID19 With 3D Printing Solutions

“As a high-tech company, we are now able to include our development and production expertise into this one-time project. Even though components for ventilators aren’t usually part of our business- Corona concerns all of us”, says Berthold Schmidt, CEO of TRUMPF Photonic Components.

The Laser diodes shall be exported end of May to be fit into 3500 ventilators. In the course of the corona-crisis, they are additionally being manufactured by a US-American producer.

Laser Analyses Breathing Air

With the Laser diodes, the TRUMPF subsidiary Photonic Components provides the core of the oxygen sensors. The mini-Lasers are to analyse the breathing air of the patients. They emit light which absorbs the air more or less strongly – depending on the amount of oxygen it contains.

READ: Renishaw Ramps Up Production Of Ventilator Components

“A measurement in the medical field has to be most reliable and precise. Therefore, our Laser diodes are well suited for this project.” says Schmidt.

TRUMPF Photonic Components supplies the smart-phone and auto mobile industry as well as others. Worldwide the company employs around 280 people having its Headquarters in Ulm, Germany.

By Dr. Manuel Thomä, Head of Media Relations

 

For other exclusive articles, visit www.equipment-news.com.

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Enabling Flexible 3D Laser Cutting

Enabling Flexible 3D Laser Cutting

There has been an increasing demand for laser cutting machines suited for high-mix, low-volume applications. Here’s one development targeted in that area. Article by Trumpf.

In the face of an increasingly volatile market, a growing number of product variants, and shorter delivery times, the picture is clear that the sheet metal industry is getting more complex and lot sizes are falling. This trend, in turn, creates a demand for machines that are suited for small and medium lot sizes and for applications where fast set up times are required.

READ: Artificial Intelligence In Bending

On the other hand, while investment costs are important, operating costs play an equally—if not even more important—role.

In line with this, Trumpf has launched the TruLaser Cell 5030, an entry-level machine for flexible 2D and 3D laser cut processing with small and medium quantities.

The TruLaser Cell 5030 features magnetic coupling that minimizes mechanical damage to the machine, enabling work to continue quickly and precisely in the event of a collision, without the need for a service technician. Although there are manufacturers who also offer magnetic coupling, the difference is that the optics for the TruLaser Cell 5030 are completely disconnected and offer a much higher degree of freedom and reduce the risk of damage. It also offers the possibility to be disconnected in the Z – direction on top of the X and Y direction.

Low-cost Production

Cut contour without
adaptive feed control.

Investment costs are important, but operating costs play an equally—if not even more important—role. Compared to hybrid and sheet-mover machines, the TruLaser Cell 5030 reduces hourly operating costs by up to 20 percent. The energy efficient and low maintenance TruDisk laser enables significant improvements in energy efficiency during production without compromising on cutting speed and productivity.

The X-Blast Technology has twice the cutting range, and the cutting nozzle can work at a greater distance to the sheet metal, which would result in fewer nozzle collisions and better edge quality as compared to conventional cutting technologies.

READ: TRUMPF Enables Automated Removal, Stacking of Parts

It possesses the flexibility that job shops require for cutting mild steel, stainless and aluminum sheets, but also shaped blanks for the automotive and motorcycle industry. The machine requires 30 percent less space, which means precious space in the production hall is made available

In summary, the time to setup a part on the TruLaser Cell 5030 will be shorter compared to a sheet moving system, which translates to additional savings.

Fast, Faster, Fastest

Cut contour with
adaptive feed control.

Apart from achieving low-cost production, owners are looking at getting their end product cut within the shortest time. But, apart from just having a quick machine that cuts fast, application is also a contributing factor in achieving fast cutting.

READ: TRUMPF Workmate: Digital Assistant for Sheet Metal Fabrication

There are many options available to choose from, for instance, if you are cutting thick materials or sheets. The Brightline Fiber enables the user to achieve high-quality cutting results while enjoying the benefits of thin sheet processing with a solid-state laser, most notable at high cutting speeds.

  1. Top cutting quality: You can create high-quality cutting edges in thick sheet with BrightLine fiber function. The optimized kerf makes part removal easier and saves time.
  2. Top part quality: BrightLine fiber combines special optics with flow-optimized BrightLine nozzles and the switchable 2-in-1 cable. The result of this is that you achieve maximum part quality. The smooth cutting edges ensure that your parts do not get caught during removal, saving you a great deal of time.

Work Smart While Cutting Fast

As for owners who are cutting mild steels, which are typically less resistant to corrosion, maintaining the optimum feed rate in cases where the thickness of the material varies within a single sheet, or where the top of the sheet is contaminated with rust or paint would lead to slag formation or interruptions in the cutting process, is no longer an issue.

READ: One Technology—Many Benefits

Active Speed Control enables constant monitoring of the cutting process with a live view through the nozzle. The sensor system observes the kerf, determines the optimal feed, and readjusts if necessary—hundreds of times per second. This minimizes cutting interruptions caused by material differences such as fluctuations in sheet thickness, rust, or coating contaminations. In the event of a potential cutting flaw, Active Speed Control stops the machine, and the TruTops Monitor software immediately informs the operator that intervention is necessary. Active Speed Control also reduces the formation of burrs and dross. The minimized reject rate leads to lowered parts costs and improves process reliability, while only requiring minimum operator involvement with the machine.

Comparison Between Laser Cutting With and Without Feed Control

Cut contour without adaptive feed control

Material bulging can easily happen when flame cutting mild steel without Active Speed Control. This will lead to unclean cuts in certain areas. Ultimately, the feed needed to be stopped entirely, as a cutting flaw had occurred. This results in faulty parts and rejects.

READ: TRUMPF Discusses Opportunities For Growth In Vietnam

Cut contour with adaptive feed control

Active Speed Control creates a clean cut, largely without a large amount of spatter or spatter residue. As rust and surface contaminations lead to automatic control and adjustment of the cutting head feed, cutting flaws are prevented effectively.

The World of Sheet Metal Processing

Nothing sums sheet metal laser cutting up more perfectly than a Grand Prix race. The power that the car effectively transfers to the road is important in a race. The same would also apply to laser cutting—only a carefully thought out machine concept, where all components are coordinated with one another, allows the laser and machine to apply the full power to the sheet metal. So how do you win a race? By skipping the pit stops.

Eliminate Pits Stops by Cutting More With Less

With the Highspeed Eco cutting procedure, you can set speed records for nitrogen cutting with solid-state lasers. Depending on the sheet thickness, the sheet throughput is increased by up to 100 percent with consistent laser power, and you can reduce gas consumption by 70 percent.

Its benefits are as follows:

  1. Speed
    1. Productivity and feed speed increased by up to 100 percent.
    2. Shortest piercing time and maximum acceleration.
  1. Extremely economical
    1. Cutting gas can be reduced by up to 70 percent, while cutting gas pressure can be reduced by up to 60 percent.
    2. Reduced power consumption.
  1. Robust
    1. Even on uneven ground.
    2. Resistant to spatter and collisions.

Overall, Highspeed Eco enables extremely smooth and high-quality cutting process with minimal oxidation on the lower edge and minimum burr formation, even in acute angles.

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

TRUMPF Enables Automated Removal, Stacking of Parts

The World Of Tube Processing

Laser Cutting In Manufacturing Process

GEORG: Cost-Efficient Lamination Cutting And Stacking

Raising Productivity with Plasma Systems

Laser Cutting In An 8-metre Format

RADAN Powers Paradigm Shift To Digitally Focused “Web Shops”

Bystronic To Showcase Laser Cutting, Bending Tech At Blechexpo 2019

 

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Industrial Companies To Present New Standard For Positioning Technologies At Hannover Messe

Industrial Companies To Present New Standard For Positioning Technologies At Hannover Messe

In an initiative led by TRUMPF, some 60 industrial companies will present omlox, the new standard for positioning technology, at Hannover Messe. This standard will serve to jointly connect tracking technologies such as ultra-wideband, RFID, 5G and GPS. With this move, these companies are responding to the rising tide of positioning solutions in industrial manufacturing.

“The goal of the initiative is to make it easier for industrial customers to use hardware and software from different vendors. This saves the end customer time and money,” says Thomas Schneider, Managing Director Research & Development at TRUMPF. Many of today’s radio technologies only work on their own. Now all positioning data are to be displayed in a uniform coordinate system. This will facilitate industry customers’ efforts to integrate solutions from multiple vendors.

A quick, affordable way to connect solutions from different providers

omlox is very much about connecting the heart of the supply chain, the factory. To determine distances with accuracy on a centimeter scale, positioning solutions have to cope with disruptive factors such as metal that deflects radio waves. Ultra-wideband (UWB) has proven its merits as a highly robust radio technology. Take, for example, automated guided vehicles and drones. They find it easier to calculate their positions and are better able to navigate with the help of these radio waves. To date, it has not been possible to connect solutions from different suppliers. The new standard will change that. Much like plug-and-play USB and Bluetooth consumer technology, it provides the means to directly connect and combine devices from different vendors.

Industry partners from Europe, the USA and Asia

Industry partners from all over Europe, Asia and the USA have committed to the new UWB standard. These companies include the software vendors and IT service providers GFT and T-Systems, the sensor manufacturers SICK AG and Pepperl+Fuchs AG, the research institute CEA Leti, the software vendor Heidelberg Mobil and the tracking solutions provider BeSpoon. Some 15 of these enterprises will be at Hannover Messe to present the omlox initiative at its public unveiling. At booth D34 in hall 17, they will demonstrate how multiple vendors’ positioning solutions can work together. Companies are welcome to join the omlox initiative. Once the fair is over, an independent organisation will be tasked with continuing to develop the standard while treating all the project partners equally and fairly.

 

Read more:

ZEISS and Senorics Establish Partnership In Sensor Technology

MVTec Expands Distributor Network in Southeast Asia

A*STAR Launches IIoT Initiative With 13 Companies

Siemens Advances Digital Transformation With Its Advanced Manufacturing Transformation Centre In Singapore

Faro Launches Enhanced 3D Measurement Software

Mitsubishi To Export Philippines Manufactured Units To ASEAN

GKN: One Of The World’s First Fully IATF 16949:2016 Certified Metal AM Suppliers

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

Artificial Intelligence In Bending

Artificial Intelligence In Bending

Manufacturers are now adopting artificial intelligence (AI) to further create value for the customers. But how would AI be applied to sheet metal bending? In this article, Melvin Tham, Regional Technology Expert – Bending, for TRUMPF, explains.

Using conventional press brakes to achieve high accuracy for sheet metal is challenging due mainly to the property of the material, where its elasticity varies according to its composition and grain direction. Therefore, the process would usually take a longer time as it requires more knowledge and skill in order to achieve higher accuracy.

In today’s industrial environment, machines are loaded with functions to ensure that the manufactured parts are precise and consistent with minimal human/operator intervention, and manufacturers are now adopting artificial intelligence (AI) to further create value for the customers. But how would AI be applied to sheet metal bending?

Automatic Set Up

Given the current high-mix, low-volume market demand, the system must be easily set up within minutes to cater for a job change over. Therefore, a self-centring tooling system would be most ideal. With an automatic tool changer, there is no longer a need for alignment as the tools are automatically placed in position and integrated into the machine. It has three to four times more storage capacity than the machine’s bending length, all just to ensure a quick changeover and without the hassle of tool shortage.

Positioning and Angle Accuracy of Part

Since the bending process is now automatic, the quality of the parts has to be checked automatically as well. Such system would require high dynamic functions such as the backgauge. The backgauge with an axis tolerance of ±0.02 mm and the angle sensor tool with tolerance at ±0.5 deg are required to ensure that the part is placed accurately in position and angle tolerance is achieved by an angle checking device.

Sensors of the backagauge are necessary for the identification of the part in position. Without this, the part would not be able to achieve its desired flange length.

An automatic detection of the angle needs to be equipped to determine the correct angle to be achieved for each bend. With Automatic Controlled Bending (ACB), the total completion time to bend, calculate and adjust will take less than a second!

Identification of Parts and Positioning Compensation

The system must be able to detect the correct part to pick up and automatically determine the datum point to compensate positioning error. It is important to define the datum point so that all bending sequence and positioning accuracy can be referenced.

Although a structured stand that pre-fixed the part datum point can be achieved, the best possible solution will be with a high-resolution and precise camera profile detection that is flexible and automatic. This camera device could detect the sheet stack, height and fine profile of the part for single sheet without the need to specifically prepare sheet in a fixed position. With such function, a lot of time is saved from the preparation for defining, picking and loading of parts.

Gripper Technology

The grippers picking up the parts are of critical importance as well. Our grippers are designed with the concept of holding the parts as firmly as a human hand would. The gripper can be used for multiple parts and the suction cups can be pneumatically turned on or off to cater to different profiles and gripping area.

CAM-assisted Offline Programming

Software plays a very important role in automation. It should be able to strategically control all movement offline with intuitive graphical teaching.

In the past, robot movements are codings that are entered line by line in order to perfect a smooth travel path. With advanced software like TruTops Bend Automation, not only are we are able to graphically teach the movement from one point to another, we can also teach the robot to flip, load and unload the part. The software enables us to run a simulation prior to the actual process.

Robotic Movement and Payload

There are many robotic equipment in the market, with some having more than eight axis of movement and payload of more than 1,000 kg! So how do we know which is suitable?

In bending, it is always the working area within the press brake and robotic system. The bigger the working capacity means there is a better flexibility on the type of profile that can be bent.

The longer the trackway of the robot arm, the more parts can be prepared for loading and unloading. This is to ensure that the machine is always filled with part for continuous production and not idling or waiting for parts. There are also possibilities that the finish part can be stacked in cage or drop box.

The higher the payload means a bigger robot arm would be required. When the arm gets too big, there is a minimum distance of limitation due to the kinetic movement, therefore small parts cannot be picked up. Hence, it is important to define the size of the product before the selection of the automatic bending cell. This will make it easier to select the type of press brake and robotic arm for the job.

With all the necessary functions that are in place to ensure the output quality of the parts, the production is all ready for artificial intelligence bending!

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Beyond Punching

Blechexpo/Schweisstec 2019 Concludes With Record-Breaking Dimensions

Laser Cutting In An 8-metre Format

Bystronic Releases BySmart Fiber In 4020 Format

TRUMPF Discusses Opportunities For Growth In Vietnam

Integrated Measurement Technology For Maximum Quality

Modular Power Package For Demanding Benders

Artificial Intelligence Software Market To Reach US$118.6 Billion By 2025

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Siemens Addresses Overheating Challenges In Additive Manufacturing

Siemens Addresses Overheating Challenges in Additive Manufacturing

Siemens Digital Industries Software has released the Additive Manufacturing (AM) Path Optimizer, a beta technology integrated in NX software to help customers solve overheating challenges and help reduce scrap and increase production yield to achieve the industrialization of AM, or the use of AM at the industrial scale.

Siemens has developed this next generation advanced simulation technology to help maximize the production yield and quality of powder bed fusion manufactured parts. This latest extension of Siemens’ end-to-end additive manufacturing solution feeds the digital thread, informing each step of the industrialized additive manufacturing process.

Building on the Simcenter Additive Manufacturing Process Simulation solution announced in November 2018, AM Path Optimizer complements Siemens’ strategy for the digital twin of the manufacturing process and addresses errors originated from suboptimal scan strategies and process parameters. These can lead to systematic failures due to overheating, which can cause scrap and inconsistencies in component quality. The company has had success demonstrating this beta technology with TRUMPF as a partner.

“With the AM Path Optimizer, Siemens and TRUMPF can push industrialization of additive technologies further forward,” said Jeroen Risse, AM Expert at TRUMPF. “In our demonstrations, we saw an improvement of geometrical accuracy, elimination of re-coater errors caused by overheating, as well as a more homogenous surface quality. Also, the scrap rate is expected to be reduced significantly.”

The technology uses an innovative approach combining physics-based simulation with machine learning to analyse a full job file in few minutes before execution on the machine. This technology is expected to help achieve “first time right” prints and drastically reduce trial and error. It can also help reduce printing costs and enable the printing of components that are nearly impossible to achieve today.

“AM Path Optimizer is the latest innovation in Siemens’ end-to-end additive manufacturing solutions, and one that we feel will have a great impact on the use of additive manufacturing for powder bed fusion manufactured parts,” said Zvi Feuer, Senior Vice President, Manufacturing Engineering Software of Siemens Digital Industries Software. “The combination of NX for AM and our Simcenter AM technology within the Xcelerator portfolio provides our customers with key capabilities to assist manufacturers in designing and printing useful parts at scale, which is unmatched in the market.”

 

For other exclusive articles, visit www.equipment-news.com.

 

Check these articles out:

Siemens Opens Additive Manufacturing Network

Siemens Expands Additive Manufacturing Portfolio Through Acquisition Of Atlas

Siemens On Data, Digitalisation, And Umati

Siemens ASEAN Appoints Thai Lai Pham as New CEO

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

TRUMPF Enables Automated Removal, Stacking Of Parts

TRUMPF Enables Automated Removal, Stacking of Parts

TRUMPF’s TruPunch 1000 punching machine and the TruMatic 1000 fibre punch-laser machine can now be upgraded to remove and stack parts automatically by equipping them with a SortMaster Compact. This enables users to boost the quality of parts and operate the machines over extended periods in automated mode.

TRUMPF has opted to conceal the SortMaster Compact under a movable hood in the machine. Its suction cups travel over the metal sheet and remove parts from the scrap skeleton on the machine table. They also hold sheet-metal parts in place when the machine makes the final separation stroke.

The suction cups vary in size and can be controlled individually to reliably remove even smaller parts. These can be as small as 70 by 30 mm and as large as 600 by 400 mm. The SortMaster Compact places the parts on a pallet that is carried on a standard cart. When all parts are finished, SortMaster Compact opens its hood and the operator can move the cart to the next station down the line.

TRUMPF’s SortMaster Compact complements existing automation solutions for these systems. The SheetMaster Compact automates the task of loading blanks into the two machines and unloading scrap skeleton and microjoint sheets. The built-in sorting function can also convey small parts to boxes underneath the machine. Users who initially opt for the automated sheet and skeleton sheet loading and unloading option can retrofit the SortMaster Compact. The TruPunch 1000 and TruMatic 1000 fibre’s compact footprints stay small with the SortMaster Compact.

 

Check these articles out:

TRUMPF Workmate: Digital Assistant for Sheet Metal Fabrication

TRUMPF Reports Higher Sales, But Decline In Orders Received

TRUMPF Discusses Opportunities For Growth In Vietnam

TRUMPF Asia Pacific Appoints New Managing Director

TRUMPF Is Expanding The Scope Of 3D Printing

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

 

TRUMPF Workmate: Digital Assistant For Sheet Metal Fabrication

TRUMPF Workmate: Digital Assistant for Sheet Metal Fabrication

TRUMPF has unveiled its new Workmate software solution at the recently held Blechexpo 2019 in Stuttgart, Germany. Using a tablet, machine operators and assembly workers can browse information designed to make their daily work easier—from advice on setting up machines to recommendations on how parts should be packaged. By ensuring people can always access the key information they need without having to search for it, this software solution saves time and helps both experienced and untrained employees work independently and efficiently.

TRUMPF‘s Workmate helps users organize their day’s work more efficiently by providing a list of all pending jobs. It also offers a dedicated user interface for preparing jobs. Among other things, this shows the user where the parts required for the job are stored. If the parts have to be fetched from the warehouse, the operator can allocate them to the job directly in Workmate to keep stock records updated.

Workmate also provides assistance in setting up laser, punching, punch-laser and bending machines. The software tells the operator which tools the system should be equipped with to process each job. Workmate also specifies which process parameters the operator can use to configure the machine, and it allows users to track job progress while the machine is working. Once the parts are finished, Workmate helps users to remove the parts correctly and stack and label them in accordance with the job requirements.

Workmate also assists workers with manual tasks such as welding or assembly by providing detailed work instructions and safety information. What’s more, Workmate can tell users where fixtures are stored and how the parts processed for a job should be packaged. Workmate will be available from spring 2020.

 

Check these articles out:

TRUMPF Reports Higher Sales, But Decline In Orders Received

TRUMPF To Unveil Automated Mass 3D Printing Solution At Formnext 2019

TRUMPF Discusses Opportunities For Growth In Vietnam

TRUMPF Asia Pacific Appoints New Managing Director

TRUMPF Reports Six Percent Revenue Growth in FY2019

TRUMPF Is Expanding The Scope Of 3D Printing

Trumpf Steps Up Expansion Of Smart Factory Solutions

 

WANT MORE INSIDER NEWS? SUBSCRIBE TO OUR DIGITAL MAGAZINE NOW!

FOLLOW US ON: LinkedIn, Facebook, Twitter

 

 

Back To Top